Ontology highlight
ABSTRACT: Background and purpose
Cerebrovascular remodelling is one of the important risk factors of stroke. The underlying mechanisms are unclear. Integrin β3 and volume-regulated ClC-3 Cl(-) channels have recently been implicated as important contributors to vascular cell proliferation. Therefore, we investigated the role of integrin β3 in cerebrovascular remodelling and related Cl(-) signalling pathway.Experimental approach
Cl(-) currents were recorded using a patch clamp technique. The expression of integrin β3 in hypertensive animals was examined by Western blot and immunohistochemisty. Immunoprecipitation, cDNA and siRNA transfection were employed to investigate the integrin β3/Src/ClC-3 signalling.Key results
Integrin β3 expression was up-regulated in stroke-prone spontaneously hypertensive rats, 2-kidney 2-clip hypertensive rats and angiotensin II-infused hypertensive mice. Integrin β3 expression was positively correlated with medial cross-sectional area and ClC-3 expression in the basilar artery of 2-kidney 2-clip hypertensive rats. Knockdown of integrin β3 inhibited the proliferation of rat basilar vascular smooth muscle cells induced by angiotensin II. Co-immunoprecipitation and immunofluorescence experiments revealed a physical interaction between integrin β3, Src and ClC-3 protein. The integrin β3/Src/ClC-3 signalling pathway was shown to be involved in the activation of volume-regulated chloride channels induced by both hypo-osmotic stress and angiotensin II. Tyrosine 284 within a concensus Src phosphorylation site was the key point for ClC-3 channel activation. ClC-3 knockout significantly attenuated angiotensin II-induced cerebrovascular remodelling.Conclusions and implications
Integrin β3 mediates cerebrovascular remodelling during hypertension via Src/ClC-3 signalling pathway.
SUBMITTER: Zeng JW
PROVIDER: S-EPMC4080971 | biostudies-literature |
REPOSITORIES: biostudies-literature