Nonwoven-based gelatin/polycaprolactone membrane proves suitability in a preclinical assessment for treatment of soft tissue defects.
Ontology highlight
ABSTRACT: Standard preclinical assessments in vitro often have limitations regarding their transferability to human beings, mainly evoked by their nonhuman and tissue-different/nontissue-specific source. Here, we aimed at employing tissue-authentic simple and complex interactive fibroblast-epithelial cell systems and their in vivo-relevant biomarkers for preclinical in vitro assessment of nonwoven-based gelatin/polycaprolactone membranes (NBMs) for treatment of soft tissue defects. NBMs were composed of electrospun gelatin and polycaprolactone nanofiber nonwovens. Scanning electron microscopy in conjunction with actin/focal contact integrin fluorescence revealed successful adhesion and proper morphogenesis of keratinocytes and fibroblasts, along with cells' derived extracellular matrix deposits. The "feel-good factor" of cells under study on the NBM was substantiated by forming a confluent connective tissue entity, which was concomitant with a stratified epithelial equivalent. Immunohistochemistry proved tissue authenticity over time by abundance of the biomarker vimentin in the connective tissue entity, and chronological increase of keratins KRT1/10 and involucrin expression in epithelial equivalents. Suitability of the novel NBM as wound dressing was evidenced by an almost completion of epithelial wound closure in a pilot mini-pig study, after a surgical intervention-caused gingival dehiscence. In summary, preclinical assessment by tissue-authentic cell systems and the animal pilot study revealed the NBM as an encouraging therapeutic medical device for prospective clinical applications.
SUBMITTER: Schulz S
PROVIDER: S-EPMC4086676 | biostudies-literature | 2014 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA