Lack of group X secreted phospholipase A₂ increases survival following pandemic H1N1 influenza infection.
Ontology highlight
ABSTRACT: The role of Group X secreted phospholipase A2 (GX-sPLA2) during influenza infection has not been previously investigated. We examined the role of GX-sPLA2 during H1N1 pandemic influenza infection in a GX-sPLA2 gene targeted mouse (GX(-/-)) model and found that survival after infection was significantly greater in GX(-/-) mice than in GX(+/+) mice. Downstream products of GX-sPLA2 activity, PGD2, PGE2, LTB4, cysteinyl leukotrienes and Lipoxin A4 were significantly lower in GX(-/-) mice BAL fluid. Lung microarray analysis identified an earlier and more robust induction of T and B cell associated genes in GX(-/-) mice. Based on the central role of sPLA2 enzymes as key initiators of inflammatory processes, we propose that activation of GX-sPLA2 during H1N1pdm infection is an early step of pulmonary inflammation and its inhibition increases adaptive immunity and improves survival. Our findings suggest that GX-sPLA2 may be a potential therapeutic target during influenza.
SUBMITTER: Kelvin AA
PROVIDER: S-EPMC4106042 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA