Unknown

Dataset Information

0

Real-time monitoring of protein conformational changes using a nano-mechanical sensor.


ABSTRACT: Proteins can switch between different conformations in response to stimuli, such as pH or temperature variations, or to the binding of ligands. Such plasticity and its kinetics can have a crucial functional role, and their characterization has taken center stage in protein research. As an example, Topoisomerases are particularly interesting enzymes capable of managing tangled and supercoiled double-stranded DNA, thus facilitating many physiological processes. In this work, we describe the use of a cantilever-based nanomotion sensor to characterize the dynamics of human topoisomerase II (Topo II) enzymes and their response to different kinds of ligands, such as ATP, which enhance the conformational dynamics. The sensitivity and time resolution of this sensor allow determining quantitatively the correlation between the ATP concentration and the rate of Topo II conformational changes. Furthermore, we show how to rationalize the experimental results in a comprehensive model that takes into account both the physics of the cantilever and the dynamics of the ATPase cycle of the enzyme, shedding light on the kinetics of the process. Finally, we study the effect of aclarubicin, an anticancer drug, demonstrating that it affects directly the Topo II molecule inhibiting its conformational changes. These results pave the way to a new way of studying the intrinsic dynamics of proteins and of protein complexes allowing new applications ranging from fundamental proteomics to drug discovery and development and possibly to clinical practice.

SUBMITTER: Alonso-Sarduy L 

PROVIDER: S-EPMC4117498 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Real-time monitoring of protein conformational changes using a nano-mechanical sensor.

Alonso-Sarduy Livan L   De Los Rios Paolo P   Benedetti Fabrizio F   Vobornik Dusan D   Dietler Giovanni G   Kasas Sandor S   Longo Giovanni G  

PloS one 20140731 7


Proteins can switch between different conformations in response to stimuli, such as pH or temperature variations, or to the binding of ligands. Such plasticity and its kinetics can have a crucial functional role, and their characterization has taken center stage in protein research. As an example, Topoisomerases are particularly interesting enzymes capable of managing tangled and supercoiled double-stranded DNA, thus facilitating many physiological processes. In this work, we describe the use of  ...[more]

Similar Datasets

| S-EPMC6590988 | biostudies-literature
| S-EPMC9026295 | biostudies-literature
| S-EPMC4060661 | biostudies-literature
| S-EPMC4633595 | biostudies-literature
| S-EPMC7809499 | biostudies-literature
| S-EPMC3510467 | biostudies-literature
| S-EPMC8168339 | biostudies-literature
| S-EPMC7354920 | biostudies-literature
| S-EPMC6404975 | biostudies-literature
| S-EPMC6150693 | biostudies-literature