Unknown

Dataset Information

0

The Separatrix Algorithm for synthesis and analysis of stochastic simulations with applications in disease modeling.


ABSTRACT: Decision makers in epidemiology and other disciplines are faced with the daunting challenge of designing interventions that will be successful with high probability and robust against a multitude of uncertainties. To facilitate the decision making process in the context of a goal-oriented objective (e.g., eradicate polio by [Formula: see text]), stochastic models can be used to map the probability of achieving the goal as a function of parameters. Each run of a stochastic model can be viewed as a Bernoulli trial in which "success" is returned if and only if the goal is achieved in simulation. However, each run can take a significant amount of time to complete, and many replicates are required to characterize each point in parameter space, so specialized algorithms are required to locate desirable interventions. To address this need, we present the Separatrix Algorithm, which strategically locates parameter combinations that are expected to achieve the goal with a user-specified probability of success (e.g. 95%). Technically, the algorithm iteratively combines density-corrected binary kernel regression with a novel information-gathering experiment design to produce results that are asymptotically correct and work well in practice. The Separatrix Algorithm is demonstrated on several test problems, and on a detailed individual-based simulation of malaria.

SUBMITTER: Klein DJ 

PROVIDER: S-EPMC4117517 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Separatrix Algorithm for synthesis and analysis of stochastic simulations with applications in disease modeling.

Klein Daniel J DJ   Baym Michael M   Eckhoff Philip P  

PloS one 20140731 7


Decision makers in epidemiology and other disciplines are faced with the daunting challenge of designing interventions that will be successful with high probability and robust against a multitude of uncertainties. To facilitate the decision making process in the context of a goal-oriented objective (e.g., eradicate polio by [Formula: see text]), stochastic models can be used to map the probability of achieving the goal as a function of parameters. Each run of a stochastic model can be viewed as  ...[more]

Similar Datasets

| S-EPMC8457681 | biostudies-literature
| S-EPMC6418022 | biostudies-literature
| S-EPMC3276272 | biostudies-literature
2020-05-08 | GSE150084 | GEO
| S-EPMC3225182 | biostudies-literature
2020-05-08 | GSE150083 | GEO
2020-05-08 | GSE150025 | GEO
| S-EPMC5573283 | biostudies-literature
| S-EPMC6329989 | biostudies-literature
2010-03-10 | GSE15226 | GEO