Project description:Somatic mutations in PIK3CA (phosphatidylinositol-3 kinase, catalytic subunit, alpha isoform) are reported in breast and other human cancers to concentrate at hotspots within its kinase and helical domains. Most of these mutations cause kinase gain of function in vitro and are associated with oncogenicity in vivo. However, little is known about the mechanisms driving tumor development. We have performed computational structural studies on a homology model of wildtype PIK3CA plus recurrent H1047R, H1047L, and P539R mutations, located in the kinase and helical domains, respectively. The time evolution of the structures show that H1047R/L mutants exhibit a larger area of the catalytic cleft between the kinase N- and C-lobes compared with the wildtype that could facilitate the entrance of substrates. This larger area might yield enhanced substrate-to-product turnover associated with oncogenicity. In addition, the H1047R/L mutants display increased kinase activation loop mobility, compared with the wildtype. The P539R mutant forms more hydrogen bonds and salt-bridge interactions than the wildtype, properties that are associated with enhanced thermostability. Mutant-specific differences in the catalytic cleft and activation loop behavior suggest that structure-based mutant-specific inhibitors can be designed for PIK3CA-positive breast cancers.
Project description:Alzheimer's disease (AD) pathogenesis is associated with formation of amyloid fibrils caused by polymerization of the amyloid ?-peptide (A?), which is a process that requires unfolding of the native helical structure of A?. According to recent experimental studies, stabilization of the A? central helix is effective in preventing A? polymerization into toxic assemblies. To uncover the fundamental mechanism of unfolding of the A? central helix, we performed molecular dynamics simulations for wild-type (WT), V18A/F19A/F20A mutant (MA), and V18L/F19L/F20L mutant (ML) models of the A? central helix. It was quantitatively demonstrated that the stability of the ?-helical conformation of both MA and ML is higher than that of WT, indicating that the ?-helical propensity of the three nonpolar residues (18, 19, and 20) is the main factor for the stability of the whole A? central helix and that their hydrophobicity plays a secondary role. WT was found to completely unfold by a three-step mechanism: 1) loss of ?-helical backbone hydrogen bonds, 2) strong interactions between nonpolar sidechains, and 3) strong interactions between polar sidechains. WT did not completely unfold in cases when any of the three steps was omitted. MA and ML did not completely unfold mainly due to the lack of the first step. This suggests that disturbances in any of the three steps would be effective in inhibiting the unfolding of the A? central helix. Our findings would pave the way for design of new drugs to prevent or retard AD.
Project description:Interleukin 15 (IL-15), a four-helix bundle cytokine, is involved in a plethora of different cellular functions and, particularly, plays a key role in the development and activation of immune responses. IL-15 forms receptor complexes by binding with IL-2Rβ- and common γ(γc)-signaling subunits, which are shared with other members of the cytokines family (IL-2 for IL-2Rβ- and all other γc- cytokines for γc). The specificity of IL-15 is brought by the non-signaling α-subunit, IL-15Rα. Here we present the results of molecular dynamics simulations carried out on four relevant forms of IL-15: its monomer, IL-15 interacting individually with IL-15Rα (IL-15/IL-15Rα), with IL-2Rβ/γc subunits (IL-15/IL-2Rβ/γc) or with its three receptors simultaneously (IL-15/IL-15Rα/IL-2Rβ/γc). Through the analyses of the various trajectories, new insights on the structural features of the interfaces are highlighted, according to the considered form. The comparison of the results with the experimental data, available from X-ray crystallography, allows, in particular, the rationalization of the importance of IL-15 key residues (e.g. Asp8, Lys10, Glu64). Furthermore, the pivotal role of water molecules in the stabilization of the various protein-protein interfaces and their H-bonds networks are underlined for each of the considered complexes.
Project description:β-lactam antibiotics target DD-transpeptidases, enzymes that perform the last step of bacterial cell-wall synthesis. To block the antimicrobial activity of these antibiotics, bacteria have evolved lactamases that render them inert. Among these, TEM-1, a class A lactamase, has been extensively studied. In 2004, Horn et al. described a novel allosteric TEM-1 inhibitor, FTA, that binds distant from the TEM-1 orthosteric (penicillin-binding) pocket. TEM-1 has subsequently become a model for the study of allostery. In the present work, we perform molecular dynamics simulations of FTA-bound and FTA-absent TEM-1, totaling ~3 μS, that provide new insight into TEM-1 inhibition. In one of the simulations, bound FTA assumed a conformation different than that observed crystallographically. We provide evidence that the alternate pose is physiologically plausible and describe how it impacts our understanding of TEM-1 allostery.
Project description:Water pollution by heavy metals is of increasing concern due to its devastating effects on the environment and on human health. For the removal of heavy metals from water sources, natural materials, such as spent-coffee-grains or orange/banana/chestnut peels, appear to offer a potential cheap alternative to more sophisticated and costly technologies currently in use. However, in order to employ them effectively, it is necessary to gain a deeper understanding - at the molecular level - of the heavy metals-bioorganic-water system and exploit the power of computer simulations. As a step in this direction, we investigate via atomistic simulations the capture of lead ions from water by hemicellulose - the latter being representative of the polysaccharides that are common components of vegetables and fruit peels - as well as the reverse process. A series of independent molecular dynamics simulations, both classical and ab initio, reveals a coherent scenario which is consistent with what one would expect of an efficient capture, i.e. that it be fast and irreversible: (i) binding of the metal ions via adsorption is found to happen spontaneously on both carboxylate and hydroxide functional groups; (ii) in contrast, metal ion desorption, leading to solvation in water, involves sizable free-energy barriers.
Project description:P-glycoprotein (P-gp) plays a crucial role in cellular detoxification and drug efflux processes, transitioning between inward-facing (IF) open, occluded, and outward-facing (OF) states to facilitate substrate transport. Its role is critical in cancer therapy, where P-gp contributes to the multidrug resistance phenotype. In our study, classical and enhanced molecular dynamics (MD) simulations were conducted to dissect the structural and functional features of the P-gp conformational states. Our advanced MD simulations, including kinetically excited targeted MD (ketMD) and adiabatic biasing MD (ABMD), provided deeper insights into state transition and translocation mechanisms. Our findings suggest that the unkinking of TM4 and TM10 helices is a prerequisite for correctly achieving the outward conformation. Simulations of the IF-occluded conformations, characterized by kinked TM4 and TM10 helices, consistently demonstrated altered communication between the transmembrane domains (TMDs) and nucleotide binding domain 2 (NBD2), suggesting the implication of this interface in inhibiting P-gp's efflux function. A particular emphasis was placed on the unstructured linker segment connecting the NBD1 to TMD2 and its role in the transporter's dynamics. With the linker present, we specifically noticed a potential entrance of cholesterol (CHOL) through the TM4-TM6 portal, shedding light on crucial residues involved in accommodating CHOL. We therefore suggest that this entry mechanism could be employed for some P-gp substrates or inhibitors. Our results provide critical data for understanding P-gp functioning and developing new P-gp inhibitors for establishing more effective strategies against multidrug resistance.
Project description:The behavior of the nitroxide spin labels 1-oxyl-4-bromo-2,2,5,5-tetramethylpyrroline (R5a) and 1-oxyl-2,2,5,5-tetramethylpyrroline (R5) attached at a phosphorothioate-substituted site in a DNA duplex is modulated by the DNA in a site- and stereospecific manner. A better understanding of the mechanisms of R5a/R5 sensing of the DNA microenvironment will enhance our capability to relate information from nitroxide spectra to sequence-dependent properties of DNA. Toward this goal, electron paramagnetic resonance (EPR) spectroscopy and molecular dynamics (MD) simulations were used to investigate R5 and R5a attached as R(p) and S(p) diastereomers at phosphorothioate (pS)C(7) of d(CTACTG(pS)C(7)Y(8)TTAG). d(CTAAAGCAGTAG) (Y = T or U). X-band continuous-wave EPR spectra revealed that the dT(8) to dU(8) change alters nanosecond rotational motions of R(p)-R5a but produces no detectable differences for S(p)-R5a, R(p)-R5, and S(p)-R5. MD simulations were able to qualitatively account for these spectral variations and provide a plausible physical basis for the R5/R5a behavior. The simulations also revealed a correlation between DNA backbone B(I)/B(II) conformations and R5/R5a rotational diffusion, thus suggesting a direct connection between DNA local backbone dynamics and EPR-detectable R5/R5a motion. These results advance our understanding of how a DNA microenvironment influences nitroxide motion and the observed EPR spectra. This may enable use of R5/R5a for a quantitative description of the sequence-dependent properties of large biologically relevant DNA molecules.
Project description:Glutamine synthetase (GS) catalyzes ATP-dependent ligation of ammonia and glutamate to glutamine. Two mutations of human GS (R324C and R341C) were connected to congenital glutamine deficiency with severe brain malformations resulting in neonatal death. Another GS mutation (R324S) was identified in a neurologically compromised patient. However, the molecular mechanisms underlying the impairment of GS activity by these mutations have remained elusive. Molecular dynamics simulations, free energy calculations, and rigidity analyses suggest that all three mutations influence the first step of GS catalytic cycle. The R324S and R324C mutations deteriorate GS catalytic activity due to loss of direct interactions with ATP. As to R324S, indirect, water-mediated interactions reduce this effect, which may explain the suggested higher GS residual activity. The R341C mutation weakens ATP binding by destabilizing the interacting residue R340 in the apo state of GS. Additionally, the mutation is predicted to result in a significant destabilization of helix H8, which should negatively affect glutamate binding. This prediction was tested in HEK293 cells overexpressing GS by dot-blot analysis: Structural stability of H8 was impaired through mutation of amino acids interacting with R341, as indicated by a loss of masking of an epitope in the glutamate binding pocket for a monoclonal anti-GS antibody by L-methionine-S-sulfoximine; in contrast, cells transfected with wild type GS showed the masking. Our analyses reveal complex molecular effects underlying impaired GS catalytic activity in three clinically relevant mutants. Our findings could stimulate the development of ATP binding-enhancing molecules by which the R324S mutant can be repaired extrinsically.
Project description:The human monoamine transporters (MATs) facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia, and Parkinson's disease. Inhibition of the MATs is thus an important strategy for treatment of such diseases. The MATs are sodium-coupled transport proteins belonging to the neurotransmitter/Na(+) symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the MATs, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors.
Project description:In humans and other eukaryotes, DNA is condensed into chromatin fibers that are further wound into chromosomes. This organization allows regulatory elements in the genome, often distant from each other in the linear DNA, to interact and facilitate gene expression through regions known as topologically associating domains (TADs). CCCTC-binding factor (CTCF) is one of the major components of TAD formation and is responsible for recruiting a partner protein, cohesin, to perform loop extrusion and facilitate proper gene expression within TADs. Because single-residue CTCF mutations have been linked to the development of a variety of cancers in humans, we aim to better understand how these mutations affect the CTCF structure and its interaction with DNA. To this end, we compare all-atom molecular dynamics simulations of a wildtype CTCF-DNA complex to those of eight different cancer-linked CTCF mutant sequences. We find that most mutants have lower binding energies compared to the wildtype protein, leading to the formation of less stable complexes. Depending on the type and position of the mutation, this loss of stability can be attributed to major changes in the electrostatic potential, loss of hydrogen bonds between the CTCF and DNA, and/or destabilization of specific zinc fingers. Interestingly, certain mutations in specific fingers can affect the interaction with the DNA of other fingers, explaining why mere single mutations can impair CTCF function. Overall, these results shed mechanistic insights into experimental observations and further underscore CTCF's importance in the regulation of chromatin architecture and gene expression.