Unknown

Dataset Information

0

Automated gastric slow wave cycle partitioning and visualization for high-resolution activation time maps.


ABSTRACT: High-resolution (HR) multi-electrode mapping has become an important technique for evaluating gastrointestinal (GI) slow wave (SW) behaviors. However, the application and uptake of HR mapping has been constrained by the complex and laborious task of analyzing the large volumes of retrieved data. Recently, a rapid and reliable method for automatically identifying activation times (ATs) of SWs was presented, offering substantial efficiency gains. To extend the automated data-processing pipeline, novel automated methods are needed for partitioning identified ATs into their propagation cycles, and for visualizing the HR spatiotemporal maps. A novel cycle partitioning algorithm (termed REGROUPS) is presented. REGROUPS employs an iterative REgion GROwing procedure and incorporates a Polynomial-surface-estimate Stabilization step, after initiation by an automated seed selection process. Automated activation map visualization was achieved via an isochronal contour mapping algorithm, augmented by a heuristic 2-step scheme. All automated methods were collectively validated in a series of experimental test cases of normal and abnormal SW propagation, including instances of patchy data quality. The automated pipeline performance was highly comparable to manual analysis, and outperformed a previously proposed partitioning approach. These methods will substantially improve the efficiency of GI HR mapping research.

SUBMITTER: Erickson JC 

PROVIDER: S-EPMC4127312 | biostudies-literature | 2011 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Automated gastric slow wave cycle partitioning and visualization for high-resolution activation time maps.

Erickson Jonathan C JC   O'Grady Greg G   Du Peng P   Egbuji John U JU   Pullan Andrew J AJ   Cheng Leo K LK  

Annals of biomedical engineering 20101007 1


High-resolution (HR) multi-electrode mapping has become an important technique for evaluating gastrointestinal (GI) slow wave (SW) behaviors. However, the application and uptake of HR mapping has been constrained by the complex and laborious task of analyzing the large volumes of retrieved data. Recently, a rapid and reliable method for automatically identifying activation times (ATs) of SWs was presented, offering substantial efficiency gains. To extend the automated data-processing pipeline, n  ...[more]

Similar Datasets

| S-EPMC5292208 | biostudies-literature
| S-EPMC6724537 | biostudies-literature
| S-EPMC3911879 | biostudies-literature
| S-EPMC3156377 | biostudies-literature
| S-EPMC4323276 | biostudies-literature
| S-EPMC5399676 | biostudies-literature
| S-EPMC3644654 | biostudies-literature
| S-EPMC6186812 | biostudies-literature
| S-EPMC3535517 | biostudies-literature
| S-EPMC4877247 | biostudies-literature