Unknown

Dataset Information

0

Signal propagation in multi-layer DNAzyme cascades using structured chimeric substrates.


ABSTRACT: Signal propagation through enzyme cascades is a critical component of information processing in cellular systems. Although such systems have potential as biomolecular computing tools, rational design of synthetic protein networks remains infeasible. DNA strands with catalytic activity (DNAzymes) are an attractive alternative, enabling rational cascade design through predictable base-pair hybridization principles. Multi-layered DNAzyme signaling and logic cascades are now reported. Signaling between DNAzymes was achieved using a structured chimeric substrate (SCS) that releases a downstream activator after cleavage by an upstream DNAzyme. The SCS can be activated by various upstream DNAzymes, can be coupled to DNA strand-displacement devices, and is highly resistant to interference from background DNA. This work enables the rational design of synthetic DNAzyme regulatory networks, with potential applications in biomolecular computing, biodetection, and autonomous theranostics.

SUBMITTER: Brown CW 

PROVIDER: S-EPMC4134131 | biostudies-literature | 2014 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Signal propagation in multi-layer DNAzyme cascades using structured chimeric substrates.

Brown Carl W CW   Lakin Matthew R MR   Horwitz Eli K EK   Fanning M Leigh ML   West Hannah E HE   Stefanovic Darko D   Graves Steven W SW  

Angewandte Chemie (International ed. in English) 20140602 28


Signal propagation through enzyme cascades is a critical component of information processing in cellular systems. Although such systems have potential as biomolecular computing tools, rational design of synthetic protein networks remains infeasible. DNA strands with catalytic activity (DNAzymes) are an attractive alternative, enabling rational cascade design through predictable base-pair hybridization principles. Multi-layered DNAzyme signaling and logic cascades are now reported. Signaling betw  ...[more]

Similar Datasets

| S-EPMC2645680 | biostudies-literature
| S-EPMC3044278 | biostudies-literature
| S-EPMC9946820 | biostudies-literature
| S-EPMC3377992 | biostudies-literature
| S-EPMC7657265 | biostudies-literature
| S-EPMC3035479 | biostudies-literature
| S-EPMC2709801 | biostudies-literature
| S-EPMC4379503 | biostudies-literature
| S-EPMC6920525 | biostudies-literature
| S-EPMC7413406 | biostudies-literature