Project description:Expansion mutations in polyalanine stretches are associated with a growing number of diseases sharing a high degree of genotypic and phenotypic commonality. These similarities prompted us to query the normal function of physiological polyalanine stretches and to investigate whether a common molecular mechanism is involved in these diseases. Here, we show that UBA6, an E1 ubiquitin-activating enzyme, recognizes a polyalanine stretch within its cognate E2 ubiquitin-conjugating enzyme USE1. Aberrations in this polyalanine stretch reduce ubiquitin transfer to USE1 and, subsequently, polyubiquitination and degradation of its target, the ubiquitin ligase E6AP. Furthermore, we identify competition for the UBA6-USE1 interaction by various proteins with polyalanine expansion mutations in the disease state. The deleterious interactions of expanded polyalanine tract proteins with UBA6 in mouse primary neurons alter the levels and ubiquitination-dependent degradation of E6AP, which in turn affects the levels of the synaptic protein Arc. These effects are also observed in induced pluripotent stem cell-derived autonomic neurons from patients with polyalanine expansion mutations, where UBA6 overexpression increases neuronal resilience to cell death. Our results suggest a shared mechanism for such mutations that may contribute to the congenital malformations seen in polyalanine tract diseases.
Project description:The mechanisms by which ethanol damages the developing and adult central nervous system (CNS) remain unclear. Activity-dependent neuroprotective protein (ADNP) is a glial protein that protects the CNS against a wide array of insults and is critical for CNS development. NAPVSIPQ (NAP), a potent active fragment of ADNP, potentiated axon outgrowth in cerebellar granule neurons by activating the sequential tyrosine phosphorylation of Fyn kinase and the scaffold protein Crk-associated substrate (Cas). Pharmacological inhibition of Fyn kinase or expression of a Fyn kinase siRNA abolished NAP-mediated axon outgrowth. Concentrations of ethanol attained after social drinking blocked NAP-mediated axon outgrowth (IC(50) = 17 mM) by inhibiting NAP activation of Fyn kinase and Cas. These findings identify a mechanism for ADNP regulation of glial-neuronal interactions in developing cerebellum and a pathogenesis of ethanol neurotoxicity.
Project description:The TARP syndrome (Talipes equinovarus, Atrial septal defect, Robin sequence, and Persistent left superior vena cava) is an X-linked disorder that was determined to be caused by mutations in RBM10 in two families, and confirmed in a subsequent case report. The first two original families were quite similar in phenotype, with uniform early lethality although a confirmatory case report showed survival into childhood. Here we report on five affecteds from three newly recognized families, including patients with atypical manifestations. None of the five patients had talipes and others also lacked cardinal TARP features of Robin sequence and atrial septal defect. All three families demonstrated de novo mutations, and one of the families had two recurrences, with demonstrable maternal mosaicism.
Project description:Previous findings showed that in mice, complete knockout of activity-dependent neuroprotective protein (ADNP) abolishes brain formation, while haploinsufficiency (Adnp+/-) causes cognitive impairments. We hypothesized that mutations in ADNP lead to a developmental/autistic syndrome in children. Indeed, recent phenotypic characterization of children harboring ADNP mutations (ADNP syndrome children) revealed global developmental delays and intellectual disabilities, including speech and motor dysfunctions. Mechanistically, ADNP includes a SIP motif embedded in the ADNP-derived snippet drug candidate NAP (NAPVSIPQ, also known as CP201), which binds to microtubule end-binding protein 3, essential for dendritic spine formation. Here, we established a unique neuronal membrane-tagged, GFP-expressing Adnp+/- mouse line allowing in vivo synaptic pathology quantification. We discovered that Adnp deficiency reduced dendritic spine density and altered synaptic gene expression, both of which were partly ameliorated by NAP treatment. Adnp+/-mice further exhibited global developmental delays, vocalization impediments, gait and motor dysfunctions, and social and object memory impairments, all of which were partially reversed by daily NAP administration (systemic/nasal). In conclusion, we have connected ADNP-related synaptic pathology to developmental and behavioral outcomes, establishing NAP in vivo target engagement and identifying potential biomarkers. Together, these studies pave a path toward the clinical development of NAP (CP201) for the treatment of ADNP syndrome.
Project description:Autoimmune Disease, Multisystem, with Facial Dysmorphism (ADMFD) is an autosomal recessive disorder due to pathogenic variants in the ITCH gene. It is characterized by failure to thrive, dysmorphic facial features, developmental delay, and systemic autoimmunity that can manifest variably with autoimmune hepatitis, thyroiditis, and enteropathy, among other organ manifestations. It was originally described in 10 consanguineous Old Order Amish patients, and more recently in two patients of White British and Black German ethnicities. While the role of ITCH protein in apoptosis and inflammation has previously been characterized, a defect in cellular bioenergetics has not yet been reported in ITCH deficiency. Here we present a Caucasian female originally evaluated for possible mitochondrial respiratory chain deficiency, who ultimately was found to have two novel variants in ITCH with absence of ITCH protein in patient derived fibroblasts. Clinical studies of patient muscle showed mitochondrial DNA copy number of 57% compared to controls. Functional studies in skin fibroblasts revealed decreased activity of mitochondrial fatty acid oxidation and oxidative phosphorylation, and decreased overall ATP production. Our findings confirm mitochondrial energy dysfunction in a patient with ITCH deficiency offering the opportunity to assess alternative therapeutic options.
Project description:Five mutations in the ENAM gene have been found to cause hypoplastic amelogenesis imperfecta (AI), with phenotypes ranging from localized enamel pitting in carriers to severe hypoplastic AI. To determine the generality of ENAM mutations in hypoplastic AI, we sequenced the ENAM gene in ten Turkish families segregating autosomal hypoplastic AI. In two families, ENAM mutations were found. A novel nonsense mutation (g.12663C>A; p.S246X) was identified in one family segregating local hypoplastic AI as a dominant trait. Affected individuals in a second family segregating autosomal-recessive AI were compound heterozygotes for a novel insertion mutation (g.12946_12947insAGTCAGTACCAGTACTGTGTC) and a previously described insertion (g.13185_13186insAG) mutation. Heterozygous carriers of either insertion had a localized enamel-pitting phenotype. These findings substantiate that enamel phenotypes of ENAM mutations may be dose-dependent, with generalized hypoplastic AI segregating as a recessive trait and localized enamel pitting segregating as a dominant trait.
Project description:The phenotype of hereditary apolipoprotein A-I amyloidosis is heterogeneous with some patients developing extensive visceral amyloid deposits and end-stage renal failure as young adults and others having only laryngeal and/or skin amyloid, which may be of little clinical consequence. Clinical management and prognosis of patients with systemic amyloidosis depend entirely on correct identification of the fibril protein, such that light chain amyloidosis (AL, previously referred to as "primary"), the most frequently diagnosed type, is treated with chemotherapy, which has absolutely no role in hereditary apolipoprotein A-I amyloidosis. We report five novel apolipoprotein A-I variants, four of which were amyloidogenic and one of which was incidental in a patient with systemic AL amyloidosis. Interestingly, only one of four patients with apolipoprotein A-I amyloidosis had a family history of similar disease. Laser microdissection and tandem mass spectrometry-based proteomics were used to confirm the amyloid fibril protein and, for the first time in apolipoprotein A-I amyloidosis, demonstrated that only mutated protein as opposed to wild-type apolipoprotein A-I was deposited as amyloid. The clinical spectrum and outcome of hereditary apolipoprotein A-I amyloidosis are reviewed in detail and support the need for sequencing of the apolipoprotein A-I gene among patients with apparent localized amyloidosis in whom IHC is nondiagnostic of the fibril protein, even in the absence of a family history of disease.
Project description:BackgroundMild hypertrophy but increased arrhythmic risk characterizes the stereotypic phenotype proposed for hypertrophic cardiomyopathy (HCM) caused by thin-filament mutations. However, whether such clinical profile is different from more prevalent thick-filament-associated disease is unresolved.ObjectivesThis study aimed to assess clinical features and outcomes in a large cohort of patients with HCM associated with thin-filament mutations compared with thick-filament HCM.MethodsAdult HCM patients (age >18 years), 80 with thin-filament and 150 with thick-filament mutations, were followed for an average of 4.5 years.ResultsCompared with thick-filament HCM, patients with thin-filament mutations showed: 1) milder and atypically distributed left ventricular (LV) hypertrophy (maximal wall thickness 18 ± 5 mm vs. 24 ± 6 mm; p < 0.001) and less prevalent outflow tract obstruction (19% vs. 34%; p = 0.015); 2) higher rate of progression to New York Heart Association functional class III or IV (15% vs. 5%; p = 0.013); 3) higher prevalence of systolic dysfunction or restrictive LV filling at last evaluation (20% vs. 9%; p = 0.038); 4) 2.4-fold increase in prevalence of triphasic LV filling pattern (26% vs. 11%; p = 0.002); and 5) similar rates of malignant ventricular arrhythmias and sudden cardiac death (p = 0.593).ConclusionsIn adult HCM patients, thin-filament mutations are associated with increased likelihood of advanced LV dysfunction and heart failure compared with thick-filament disease, whereas arrhythmic risk in both subsets is comparable. Triphasic LV filling is particularly common in thin-filament HCM, reflecting profound diastolic dysfunction.
Project description:BackgroundADNP is vital for embryonic development. Is this function conserved for the homologous protein ADNP2?ResultsDown-regulation/silencing of ADNP or ADNP2 in zebrafish embryos or mouse erythroleukemia cells inhibited erythroid maturation, with ADNP directly associating with the ?-globin locus control region.ConclusionADNPs are novel molecular regulators of erythropoiesis.SignificanceNew regulators of globin synthesis are suggested. Activity-dependent neuroprotective protein (ADNP) and its homologue ADNP2 belong to a homeodomain, the zinc finger-containing protein family. ADNP is essential for mouse embryonic brain formation. ADNP2 is associated with cell survival, but its role in embryogenesis has not been evaluated. Here, we describe the use of the zebrafish model to elucidate the developmental roles of ADNP and ADNP2. Although we expected brain defects, we were astonished to discover that the knockdown zebrafish embryos were actually lacking blood and suffered from defective hemoglobin production. Evolutionary conservation was established using mouse erythroleukemia (MEL) cells, a well studied erythropoiesis model, in which silencing of ADNP or ADNP2 produced similar results as in zebrafish. Exogenous RNA encoding ADNP/ADNP2 rescued the MEL cell undifferentiated state, demonstrating phenotype specificity. Brg1, an ADNP-interacting chromatin-remodeling protein involved in erythropoiesis through regulation of the globin locus, was shown here to interact also with ADNP2. Furthermore, chromatin immunoprecipitation revealed recruitment of ADNP, similar to Brg1, to the mouse ?-globin locus control region in MEL cells. This recruitment was apparently diminished upon dimethyl sulfoxide (DMSO)-induced erythrocyte differentiation compared with the nondifferentiated state. Importantly, exogenous RNA encoding ADNP/ADNP2 significantly increased ?-globin expression in MEL cells in the absence of any other differentiation factors. Taken together, our results reveal an ancestral role for the ADNP protein family in maturation and differentiation of the erythroid lineage, associated with direct regulation of ?-globin expression.
Project description:H3 lysine 9 trimethylation (H3K9me3) is a histone posttranslational modification (PTM) that has emerged as hallmark of pericentromeric heterochromatin. This constitutive chromatin domain is composed of repetitive DNA elements, whose transcription is differentially regulated. Mammalian cells contain three HP1 proteins, HP1α, HP1β and HP1γ These have been shown to bind to H3K9me3 and are thought to mediate the effects of this histone PTM. However, the mechanisms of HP1 chromatin regulation and the exact functional role at pericentromeric heterochromatin are still unclear. Here, we identify activity-dependent neuroprotective protein (ADNP) as an H3K9me3 associated factor. We show that ADNP does not bind H3K9me3 directly, but that interaction is mediated by all three HP1 isoforms in vitro. However, in cells ADNP localization to areas of pericentromeric heterochromatin is only dependent on HP1α and HP1β. Besides a PGVLL sequence patch we uncovered an ARKS motif within the ADNP homeodomain involved in HP1 dependent H3K9me3 association and localization to pericentromeric heterochromatin. While knockdown of ADNP had no effect on HP1 distribution and heterochromatic histone and DNA modifications, we found ADNP silencing major satellite repeats. Our results identify a novel factor in the translation of H3K9me3 at pericentromeric heterochromatin that regulates transcription.