Ethanol inhibits neuronal differentiation by disrupting activity-dependent neuroprotective protein signaling.
Ontology highlight
ABSTRACT: The mechanisms by which ethanol damages the developing and adult central nervous system (CNS) remain unclear. Activity-dependent neuroprotective protein (ADNP) is a glial protein that protects the CNS against a wide array of insults and is critical for CNS development. NAPVSIPQ (NAP), a potent active fragment of ADNP, potentiated axon outgrowth in cerebellar granule neurons by activating the sequential tyrosine phosphorylation of Fyn kinase and the scaffold protein Crk-associated substrate (Cas). Pharmacological inhibition of Fyn kinase or expression of a Fyn kinase siRNA abolished NAP-mediated axon outgrowth. Concentrations of ethanol attained after social drinking blocked NAP-mediated axon outgrowth (IC(50) = 17 mM) by inhibiting NAP activation of Fyn kinase and Cas. These findings identify a mechanism for ADNP regulation of glial-neuronal interactions in developing cerebellum and a pathogenesis of ethanol neurotoxicity.
SUBMITTER: Chen S
PROVIDER: S-EPMC2604983 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA