Unknown

Dataset Information

0

Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4.


ABSTRACT: UNLABELLED:Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012. Recently, the MERS-CoV receptor dipeptidyl peptidase 4 (DPP4) was identified and the specific interaction of the receptor-binding domain (RBD) of MERS-CoV spike protein and DPP4 was determined by crystallography. Animal studies identified rhesus macaques but not hamsters, ferrets, or mice to be susceptible for MERS-CoV. Here, we investigated the role of DPP4 in this observed species tropism. Cell lines of human and nonhuman primate origin were permissive of MERS-CoV, whereas hamster, ferret, or mouse cell lines were not, despite the presence of DPP4. Expression of human DPP4 in nonsusceptible BHK and ferret cells enabled MERS-CoV replication, whereas expression of hamster or ferret DPP4 did not. Modeling the binding energies of MERS-CoV spike protein RBD to DPP4 of human (susceptible) or hamster (nonsusceptible) identified five amino acid residues involved in the DPP4-RBD interaction. Expression of hamster DPP4 containing the five human DPP4 amino acids rendered BHK cells susceptible to MERS-CoV, whereas expression of human DPP4 containing the five hamster DPP4 amino acids did not. Using the same approach, the potential of MERS-CoV to utilize the DPP4s of common Middle Eastern livestock was investigated. Modeling of the DPP4 and MERS-CoV RBD interaction predicted the ability of MERS-CoV to bind the DPP4s of camel, goat, cow, and sheep. Expression of the DPP4s of these species on BHK cells supported MERS-CoV replication. This suggests, together with the abundant DPP4 presence in the respiratory tract, that these species might be able to function as a MERS-CoV intermediate reservoir. IMPORTANCE:The ongoing outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) has caused 701 laboratory-confirmed cases to date, with 249 fatalities. Although bats and dromedary camels have been identified as potential MERS-CoV hosts, the virus has so far not been isolated from any species other than humans. The inability of MERS-CoV to infect commonly used animal models, such as hamster, mice, and ferrets, indicates the presence of a species barrier. We show that the MERS-CoV receptor DPP4 plays a pivotal role in the observed species tropism of MERS-CoV and subsequently identified the amino acids in DPP4 responsible for this restriction. Using a combined modeling and experimental approach, we predict that, based on the ability of MERS-CoV to utilize the DPP4 of common Middle East livestock species, such as camels, goats, sheep, and cows, these form a potential MERS-CoV intermediate host reservoir species.

SUBMITTER: van Doremalen N 

PROVIDER: S-EPMC4136254 | biostudies-literature | 2014 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4.

van Doremalen Neeltje N   Miazgowicz Kerri L KL   Milne-Price Shauna S   Bushmaker Trenton T   Robertson Shelly S   Scott Dana D   Kinne Joerg J   McLellan Jason S JS   Zhu Jiang J   Munster Vincent J VJ  

Journal of virology 20140604 16


<h4>Unlabelled</h4>Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012. Recently, the MERS-CoV receptor dipeptidyl peptidase 4 (DPP4) was identified and the specific interaction of the receptor-binding domain (RBD) of MERS-CoV spike protein and DPP4 was determined by crystallography. Animal studies identified rhesus macaques but not hamsters, ferrets, or mice to be susceptible for MERS-CoV. Here, we investigated the role of DPP4 in this observed species tropism. Cell lines of  ...[more]

Similar Datasets

| S-EPMC7006675 | biostudies-literature
| S-EPMC6401458 | biostudies-literature
| S-EPMC3993820 | biostudies-literature
| S-EPMC4689477 | biostudies-literature
| S-EPMC7112025 | biostudies-literature
| S-EPMC3911594 | biostudies-literature
| S-EPMC5599747 | biostudies-literature
| S-EPMC3852826 | biostudies-literature
| S-EPMC4747621 | biostudies-literature
2014-06-10 | E-GEOD-55023 | biostudies-arrayexpress