Unknown

Dataset Information

0

Evidence of topological surface state in three-dimensional Dirac semimetal Cd3As2.


ABSTRACT: The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals host bulk band dispersions linearly along all directions. In addition to the gapless points in the bulk, the three-dimensional Weyl/Dirac semimetals are also characterized by "topologically protected" surface state with Fermi arcs on their surface. While Cd3As2 is proposed to be a viable candidate of a Dirac semimetal, more investigations are necessary to pin down its nature. In particular, the topological surface state, the hallmark of the three-dimensional semimetal, has not been observed in Cd3As2. Here we report the electronic structure of Cd3As2 investigated by angle-resolved photoemission measurements on the (112) crystal surface and detailed band structure calculations. The measured Fermi surface and band structure show a good agreement with the band structure calculations with two bulk Dirac-like bands approaching the Fermi level and forming Dirac points near the Brillouin zone center. Moreover, the topological surface state with a linear dispersion approaching the Fermi level is identified for the first time. These results provide experimental indications on the nature of topologically non-trivial three-dimensional Dirac cones in Cd3As2.

SUBMITTER: Yi H 

PROVIDER: S-EPMC4138522 | biostudies-literature | 2014 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications


The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals host bulk band dispersions linearly along all directions. In addition to the gapless points in the bulk, the three-dimensional Weyl/Dirac semimetals are also characterized by "topologically protected" surface state with Fermi arcs on their surface. Whi  ...[more]

Similar Datasets

| S-EPMC4893742 | biostudies-literature
| S-EPMC7229177 | biostudies-literature
| S-EPMC4642520 | biostudies-literature
| S-EPMC4766419 | biostudies-literature
| S-EPMC6561951 | biostudies-literature
| S-EPMC4729874 | biostudies-other
| S-EPMC5741620 | biostudies-literature
| S-EPMC5220326 | biostudies-literature
| S-EPMC9269884 | biostudies-literature
| S-EPMC6189066 | biostudies-literature