Unknown

Dataset Information

0

Large single crystal growth, transport property, and spectroscopic characterizations of three-dimensional Dirac semimetal Cd3As2.


ABSTRACT: The three dimensional (3D) Dirac semimetal is a new quantum state of matter that has attracted much attention recently in physics and material science. Here, we report on the growth of large plate-like single crystals of Cd3As2 in two major orientations by a self-selecting vapor growth (SSVG) method, and the optimum growth conditions have been experimentally determined. The crystalline imperfections and electrical properties of the crystals were examined with transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and transport property measurements. This SSVG method makes it possible to control the as-grown crystal compositions with excess Cd or As leading to mobilities near 5-10(5) cm(2)V(-1)s(-1). Zn-doping can effectively reduce the carrier density to reach the maximum residual resistivity ratio (RRR?300K/?5K) of 7.6. A vacuum-cleaved single crystal has been investigated using angle-resolved photoemission spectroscopy (ARPES) to reveal a single Dirac cone near the center of the surface Brillouin zone with a binding energy of approximately 200 meV.

SUBMITTER: Sankar R 

PROVIDER: S-EPMC4642520 | biostudies-literature | 2015 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Large single crystal growth, transport property, and spectroscopic characterizations of three-dimensional Dirac semimetal Cd3As2.

Sankar R R   Neupane M M   Xu S-Y SY   Butler C J CJ   Zeljkovic I I   Panneer Muthuselvam I I   Huang F-T FT   Guo S-T ST   Karna Sunil K SK   Chu M-W MW   Lee W L WL   Lin M-T MT   Jayavel R R   Madhavan V V   Hasan M Z MZ   Chou F C FC  

Scientific reports 20150814


The three dimensional (3D) Dirac semimetal is a new quantum state of matter that has attracted much attention recently in physics and material science. Here, we report on the growth of large plate-like single crystals of Cd3As2 in two major orientations by a self-selecting vapor growth (SSVG) method, and the optimum growth conditions have been experimentally determined. The crystalline imperfections and electrical properties of the crystals were examined with transmission electron microscopy (TE  ...[more]

Similar Datasets

| S-EPMC4138522 | biostudies-literature
| S-EPMC7229177 | biostudies-literature
| S-EPMC4766419 | biostudies-literature
| S-EPMC4893742 | biostudies-literature
| S-EPMC4729874 | biostudies-other
| S-EPMC5741620 | biostudies-literature
| S-EPMC7217856 | biostudies-literature
| S-EPMC6561951 | biostudies-literature
| S-EPMC8307846 | biostudies-literature
| S-EPMC4857391 | biostudies-literature