Project description:Social status, defined as the relative rank or position that an individual holds in a social hierarchy, is known to be among the most important motivating forces in social behaviors. In this paper, we consider the notion of status from the perspective of a position or title held by a person in an enterprise. We study the intersection of social status and social networks in an enterprise. We study whether enterprise communication logs can help reveal how social interactions and individual status manifest themselves in social networks. To that end, we use two enterprise datasets with three communication channels--voice call, short message, and email--to demonstrate the social-behavioral differences among individuals with different status. We have several interesting findings and based on these findings we also develop a model to predict social status. On the individual level, high-status individuals are more likely to be spanned as structural holes by linking to people in parts of the enterprise networks that are otherwise not well connected to one another. On the community level, the principle of homophily, social balance and clique theory generally indicate a "rich club" maintained by high-status individuals, in the sense that this community is much more connected, balanced and dense. Our model can predict social status of individuals with 93% accuracy.
Project description:Many organizational principles of structural brain networks are established before birth and undergo considerable developmental changes afterwards. These include the topologically central hub regions and a densely connected rich club. While several studies have mapped developmental trajectories of brain connectivity and brain network organization across childhood and adolescence, comparatively little is known about subsequent development over the course of the lifespan. Here, we present a cross-sectional analysis of structural brain network development in N = 8066 participants aged 5-80 years. Across all brain regions, structural connectivity strength followed an "inverted-U"-shaped trajectory with vertex in the early 30s. Connectivity strength of hub regions showed a similar trajectory and the identity of hub regions remained stable across all age groups. While connectivity strength declined with advancing age, the organization of hub regions into a rich club did not only remain intact but became more pronounced, presumingly through a selected sparing of relevant connections from age-related connectivity loss. The stability of rich club organization in the face of overall age-related decline is consistent with a "first come, last served" model of neurodevelopment, where the first principles to develop are the last to decline with age. Rich club organization has been shown to be highly beneficial for communicability and higher cognition. A resilient rich club might thus be protective of a functional loss in late adulthood and represent a neural reserve to sustain cognitive functioning in the aging brain.
Project description:Network analyses of structural connectivity in the brain have highlighted a set of highly connected hubs that are densely interconnected, forming a "rich-club" substrate in diverse species. Here, we demonstrate the existence of rich-club organization in functional brain networks of rats. Densely interconnected rich-club regions are found to be distributed in multiple brain modules, with the majority located within the putative default mode network. Rich-club members exhibit high wiring cost (as measured by connection distance) and high metabolic running cost (as surrogated by cerebral blood flow), which may have evolved to achieve high network communications to support efficient brain functions. Furthermore, by adopting a forepaw electrical stimulation paradigm, we find that the rich-club organization of the rat functional network remains almost the same as in the resting state, whereas path motif analysis reveals significant differences, suggesting the rat brain reorganizes its topological routes by increasing locally oriented shortcuts but reducing rich-club member-involved paths to conserve metabolic running cost during unimodal stimulation. Together, our results suggest that the neuronal system is organized and dynamically operated in an economic way to balance between cost minimization and topological/functional efficiency.
Project description:Combining diffusion magnetic resonance imaging and network analysis in the adult human brain has identified a set of highly connected cortical hubs that form a "rich club"--a high-cost, high-capacity backbone thought to enable efficient network communication. Rich-club architecture appears to be a persistent feature of the mature mammalian brain, but it is not known when this structure emerges during human development. In this longitudinal study we chart the emergence of structural organization in mid to late gestation. We demonstrate that a rich club of interconnected cortical hubs is already present by 30 wk gestation. Subsequently, until the time of normal birth, the principal development is a proliferation of connections between core hubs and the rest of the brain. We also consider the impact of environmental factors on early network development, and compare term-born neonates to preterm infants at term-equivalent age. Though rich-club organization remains intact following premature birth, we reveal significant disruptions in both in cortical-subcortical connectivity and short-distance corticocortical connections. Rich club organization is present well before the normal time of birth and may provide the fundamental structural architecture for the subsequent emergence of complex neurological functions. Premature exposure to the extrauterine environment is associated with altered network architecture and reduced network capacity, which may in part account for the high prevalence of cognitive problems in preterm infants.
Project description:The rich club organization (the presence of highly connected hub core in a network) influences many structural and functional characteristics of networks including topology, the efficiency of paths and distribution of load. Despite its major role, the literature contains only a very limited set of models capable of generating networks with realistic rich club structure. One possible reason is that the rich club organization is a divisive property among complex networks which exhibit great diversity, in contrast to other metrics (e.g. diameter, clustering or degree distribution) which seem to behave very similarly across many networks. Here we propose a simple yet powerful geometry-based growing model which can generate realistic complex networks with high rich club diversity by controlling a single geometric parameter. The growing model is validated against the Internet, protein-protein interaction, airport and power grid networks.
Project description:Graph-theoretical analysis of brain connectivity data has revealed significant features of brain network organization across a range of species. Consistently, large-scale anatomical networks exhibit highly nonrandom attributes including an efficient small world modular architecture, with distinct network communities that are interlinked by hub regions. The functional importance of hubs motivates a closer examination of their mutual interconnections, specifically to examine the hypothesis that hub regions are more densely linked than expected based on their degree alone, i.e. forming a central rich club. Extending recent findings of rich club topology in the cat and human brain, this report presents evidence for the existence of rich club organization in the cerebral cortex of a non-human primate, the macaque monkey, based on a connectivity data set representing a collation of numerous tract tracing studies. Rich club regions comprise portions of prefrontal, parietal, temporal and insular cortex and are widely distributed across network communities. An analysis of network motifs reveals that rich club regions tend to form star-like configurations, indicative of their central embedding within sets of nodes. In addition, rich club nodes and edges participate in a large number of short paths across the network, and thus contribute disproportionately to global communication. As rich club regions tend to attract and disperse communication paths, many of the paths follow a characteristic pattern of first increasing and then decreasing node degree. Finally, the existence of non-reciprocal projections imposes a net directional flow of paths into and out of the rich club, with some regions preferentially attracting and others dispersing signals. Overall, the demonstration of rich club organization in a non-human primate contributes to our understanding of the network principles underlying neural connectivity in the mammalian brain, and further supports the hypothesis that rich club regions and connections have a central role in global brain communication.
Project description:Ischemic stroke involves multiple pathophysiological mechanisms with complex interactions. Efforts to decipher those mechanisms and understand the evolution of cerebral injury is key for developing successful interventions. In an innovative approach, we use literature mining, natural language processing and systems biology tools to construct, annotate and curate a brain ischemia interactome. The curated interactome includes proteins that are deregulated after cerebral ischemia in human and experimental stroke. Network analysis of the interactome revealed a rich-club organization indicating the presence of a densely interconnected hub structure of prominent contributors to disease pathogenesis. Functional annotation of the interactome uncovered prominent pathways and highlighted the critical role of the complement and coagulation cascade in the initiation and amplification of injury starting by activation of the rich-club. We performed an in-silico screen for putative interventions that have pleiotropic effects on rich-club components and we identified estrogen as a prominent candidate. Our findings show that complex network analysis of disease related interactomes may lead to a better understanding of pathogenic mechanisms and provide cost-effective and mechanism-based discovery of candidate therapeutics.
Project description:Neuroimaging studies suggest disrupted connections of the brain white matter (WM) network in bipolar disorder (BD). A group of highly interconnected high-density structures, termed the 'rich club,' represents an important network for brain functioning. Recent works have revealed abnormal rich club organization in brain networks in BD. However, little is known regarding changes in the rich club organization of the hemispheric WM network in BD. Forty-nine BD patients and fifty-five age- and sex-matched normal controls (NCs) underwent diffusion tensor imaging (DTI). Graph theory approaches were applied to quantify group-specific rich club organization and nodal degree of hemispheric WM networks. We demonstrated that rich club organization of hemispheric WM networks in BD was disrupted, with disrupted feeder and local connections among hub and peripheral regions located in the default mode network (DMN) and the control execution network (CEN). In addition, BD patients showed abnormal asymmetry in the feeder and local connections, involving the hub and peripheral regions associated with emotion regulation and visuospatial functions. Moreover, the clinical symptoms of BD showed a significant correlation with the aberrant asymmetry in the regional degree of peripheral regions. These findings reveal that BD is closely associated with disrupted feeder and local connections but no alteration in rich-club connections in the rich club organization of hemispheric WM networks and provide novel insight into the changes of brain functions in BD.
Project description:Higher cognition may require the globally coordinated integration of specialized brain regions into functional networks. A collection of structural cortical hubs-referred to as the rich club-has been hypothesized to support task-specific functional integration. In the present paper, we use a whole-cortex model to estimate directed interactions between 68 cortical regions from functional magnetic resonance imaging activity for four different tasks (reflecting different cognitive domains) and resting state. We analyze the state-dependent input and output effective connectivity (EC) of the structural rich club and relate these to whole-cortex dynamics and network reconfigurations. We find that the cortical rich club exhibits an increase in outgoing EC during task performance as compared with rest while incoming connectivity remains constant. Increased outgoing connectivity targets a sparse set of peripheral regions with specific regions strongly overlapping between tasks. At the same time, community detection analyses reveal massive reorganizations of interactions among peripheral regions, including those serving as target of increased rich club output. This suggests that while peripheral regions may play a role in several tasks, their concrete interplay might nonetheless be task-specific. Furthermore, we observe that whole-cortex dynamics are faster during task as compared with rest. The decoupling effects usually accompanying faster dynamics appear to be counteracted by the increased rich club outgoing EC. Together our findings speak to a gating mechanism of the rich club that supports fast-paced information exchange among relevant peripheral regions in a task-specific and goal-directed fashion, while constantly listening to the whole network.
Project description:In recent years, diverse studies have reported that different brain regions, which are internally densely connected, are also highly connected to each other. This configuration seems to play a key role in integrating and interchanging information between brain areas. Also, changes in the rich-club connectivity and the shift from inhibitory to excitatory behavior of hub neurons have been associated with several diseases. However, there is not a clear understanding about the role of the proportion of inhibitory/excitatory hub neurons, the dynamic consequences of rich-club disconnection, and hub inhibitory/excitatory shifts. Here, we study the synchronization and temporal correlations in the neural Izhikevich model, which comprises excitatory and inhibitory neurons located in a scale-free hierarchical network with rich-club connectivity. We evaluated the temporal autocorrelations and global synchronization dynamics displayed by the system in terms of rich-club connectivity and hub inhibitory/excitatory population. We evaluated the synchrony between pairs of sets of neurons by means of the global lability synchronization, based on the rate of change in the total number of synchronized signals. The results show that for a wide range of excitatory/inhibitory hub ratios the network displays 1/f dynamics with critical synchronization that is concordant with numerous health brain registers, while a network configuration with a vast majority of excitatory hubs mostly exhibits short-term autocorrelations with numerous large avalanches. Furthermore, rich-club connectivity promotes the increase of the global lability of synchrony and the temporal persistence of the system.