Temperate origins of long-distance seasonal migration in New World songbirds.
Ontology highlight
ABSTRACT: Migratory species exhibit seasonal variation in their geographic ranges, often inhabiting geographically and ecologically distinct breeding and nonbreeding areas. The complicated geography of seasonal migration has long posed a challenge for inferring the geographic origins of migratory species as well as evolutionary sequences of change in migratory behavior. To address this challenge, we developed a phylogenetic model of the joint evolution of breeding and nonbreeding (winter) ranges and applied it to the inference of biogeographic history in the emberizoid passerine birds. We found that seasonal migration between breeding ranges in North America and winter ranges in the Neotropics evolved primarily via shifts of winter ranges toward the tropics from ancestral ranges in North America. This result contrasts with a dominant paradigm that hypothesized migration evolving out of the tropics via shifts of the breeding ranges. We also show that major lineages of tropical, sedentary emberizoids are derived from northern, migratory ancestors. In these lineages, the winter ranges served as a biogeographic conduit for temperate-to-tropical colonization: winter-range shifts toward the tropics during the evolution of long-distance migration often preceded southward shifts of breeding ranges, the loss of migration, and in situ tropical diversification. Meanwhile, the evolution of long-distance migration enabled the persistence of old lineages in North America. These results illuminate how the evolution of seasonal migration has contributed to greater niche conservatism among tropical members of this diverse avian radiation.
SUBMITTER: Winger BM
PROVIDER: S-EPMC4143041 | biostudies-literature | 2014 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA