Primate area V1: largest response gain for receptive fields in the straight-ahead direction.
Ontology highlight
ABSTRACT: Although neuronal responses in behaving monkeys are typically studied while the monkey fixates straight ahead, it is known that eye position modulates responses of visual neurons. The modulation has been found to enhance neuronal responses when the receptive field is placed in the straight-ahead position for neurons receiving input from the peripheral but not the central retina. We studied the effect of eye position on the responses of V1 complex cells receiving input from the central retina (1.1-5.7° eccentricity) while minimizing the effect of fixational eye movements. Contrast response functions were obtained separately with drifting light and dark bars. Data were fit with the Naka-Rushton equation: r(c)=Rmax×c/(c+c50)+s, where r(c) is mean spike rate at contrast c, Rmax is the maximum response, c50 is the contrast that elicits half of Rmax, and s is the spontaneous activity. Contrast sensitivity as measured by c50 was not affected by eye position. For dark bars, there was a statistically significant decline in the normalized Rmax with increasing deviation from straight ahead. Data for bright bars showed a similar trend with a less rapid decline. Our results indicate that neurons representing the central retina show a bias for the straight-ahead position resulting from modulation of the response gain without an accompanying modulation of contrast sensitivity. The modulation is especially obvious for dark stimuli, which might be useful for directing attention to hazardous situations such as dark holes or shadows concealing important objects (Supplement 1: Video Abstract, Supplemental digital content 1, http://links.lww.com/WNR/A295).
SUBMITTER: Przybyszewski AW
PROVIDER: S-EPMC4146690 | biostudies-literature | 2014 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA