Unknown

Dataset Information

0

Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont Bacteroides thetaiotaomicron reveals the first GAG-specific bacterial endosulfatase.


ABSTRACT: Despite the importance of the microbiota in human physiology, the molecular bases that govern the interactions between these commensal bacteria and their host remain poorly understood. We recently reported that sulfatases play a key role in the adaptation of a major human commensal bacterium, Bacteroides thetaiotaomicron, to its host (Benjdia, A., Martens, E. C., Gordon, J. I., and Berteau, O. (2011) J. Biol. Chem. 286, 25973-25982). We hypothesized that sulfatases are instrumental for this bacterium, and related Bacteroides species, to metabolize highly sulfated glycans (i.e. mucins and glycosaminoglycans (GAGs)) and to colonize the intestinal mucosal layer. Based on our previous study, we investigated 10 sulfatase genes induced in the presence of host glycans. Biochemical characterization of these potential sulfatases allowed the identification of GAG-specific sulfatases selective for the type of saccharide residue and the attachment position of the sulfate group. Although some GAG-specific bacterial sulfatase activities have been described in the literature, we report here for the first time the identity and the biochemical characterization of four GAG-specific sulfatases. Furthermore, contrary to the current paradigm, we discovered that B. thetaiotaomicron possesses an authentic GAG endosulfatase that is active at the polymer level. This type of sulfatase is the first one to be identified in a bacterium. Our study thus demonstrates that bacteria have evolved more sophisticated and diverse GAG sulfatases than anticipated and establishes how B. thetaiotaomicron, and other major human commensal bacteria, can metabolize and potentially tailor complex host glycans.

SUBMITTER: Ulmer JE 

PROVIDER: S-EPMC4148858 | biostudies-literature | 2014 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont Bacteroides thetaiotaomicron reveals the first GAG-specific bacterial endosulfatase.

Ulmer Jonathan E JE   Vilén Eric Morssing EM   Namburi Ramesh Babu RB   Benjdia Alhosna A   Beneteau Julie J   Malleron Annie A   Bonnaffé David D   Driguez Pierre-Alexandre PA   Descroix Karine K   Lassalle Gilbert G   Le Narvor Christine C   Sandström Corine C   Spillmann Dorothe D   Berteau Olivier O  

The Journal of biological chemistry 20140707 35


Despite the importance of the microbiota in human physiology, the molecular bases that govern the interactions between these commensal bacteria and their host remain poorly understood. We recently reported that sulfatases play a key role in the adaptation of a major human commensal bacterium, Bacteroides thetaiotaomicron, to its host (Benjdia, A., Martens, E. C., Gordon, J. I., and Berteau, O. (2011) J. Biol. Chem. 286, 25973-25982). We hypothesized that sulfatases are instrumental for this bact  ...[more]

Similar Datasets

| S-EPMC4611039 | biostudies-literature
| S-EPMC3138274 | biostudies-literature
| S-EPMC5667867 | biostudies-literature
| S-EPMC4524142 | biostudies-literature
| S-EPMC4321491 | biostudies-literature
| S-EPMC10277260 | biostudies-literature
| S-EPMC7677362 | biostudies-literature
| S-EPMC5238430 | biostudies-literature
| S-EPMC2954219 | biostudies-literature
| S-EPMC5830307 | biostudies-literature