Unknown

Dataset Information

0

Electronic coupling and catalytic effect on H2 evolution of MoS2/graphene nanocatalyst.


ABSTRACT: Inorganic nano-graphene hybrid materials that are strongly coupled via chemical bonding usually present superior electrochemical performance. However, how the chemical bond forms and the synergistic catalytic mechanism remain fundamental questions. In this study, the chemical bonding of the MoS2 nanolayer supported on vacancy mediated graphene and the hydrogen evolution reaction of this nanocatalyst system were investigated. An obvious reduction of the metallic state of the MoS2 nanolayer is noticed as electrons are transferred to form a strong contact with the reduced graphene support. The missing metallic state associated with the unsaturated atoms at the peripheral sites in turn modifies the hydrogen evolution activity. The easiest evolution path is from the Mo edge sites, with the presence of the graphene resulting in a decrease in the energy barrier from 0.17 to 0.11 eV. Evolution of H2 from the S edge becomes more difficult due to an increase in the energy barrier from 0.43 to 0.84 eV. The clarification of the chemical bonding and catalytic mechanisms for hydrogen evolution using this strongly coupled MoS2/graphene nanocatalyst provide a valuable source of reference and motivation for further investigation for improved hydrogen evolution using chemically active nanocoupled systems.

SUBMITTER: Liao T 

PROVIDER: S-EPMC4150123 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Electronic coupling and catalytic effect on H2 evolution of MoS2/graphene nanocatalyst.

Liao Ting T   Sun Ziqi Z   Sun Chenghua C   Dou Shi Xue SX   Searles Debra J DJ  

Scientific reports 20140901


Inorganic nano-graphene hybrid materials that are strongly coupled via chemical bonding usually present superior electrochemical performance. However, how the chemical bond forms and the synergistic catalytic mechanism remain fundamental questions. In this study, the chemical bonding of the MoS2 nanolayer supported on vacancy mediated graphene and the hydrogen evolution reaction of this nanocatalyst system were investigated. An obvious reduction of the metallic state of the MoS2 nanolayer is not  ...[more]

Similar Datasets

| S-EPMC3985074 | biostudies-literature
| S-EPMC4228343 | biostudies-literature
| S-EPMC4127518 | biostudies-literature
| S-EPMC4823783 | biostudies-literature
| S-EPMC4598362 | biostudies-literature
| S-EPMC5572465 | biostudies-literature
| S-EPMC4685316 | biostudies-other
| S-EPMC5892349 | biostudies-literature
| S-EPMC5678169 | biostudies-literature