Unknown

Dataset Information

0

MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays.


ABSTRACT: A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.

SUBMITTER: Powers TW 

PROVIDER: S-EPMC4153616 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays.

Powers Thomas W TW   Neely Benjamin A BA   Shao Yuan Y   Tang Huiyuan H   Troyer Dean A DA   Mehta Anand S AS   Haab Brian B BB   Drake Richard R RR  

PloS one 20140903 9


A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were  ...[more]

Similar Datasets

| S-EPMC4357650 | biostudies-literature
| S-EPMC2893624 | biostudies-literature