Project description:We report characteristics of oseltamivir-resistant influenza A(H1N1)pdm09 viruses and patients infected with these viruses in the United States. During 2013-14, fifty-nine (1.2%) of 4,968 analyzed US influenza A(H1N1)pdm09 viruses had the H275Y oseltamivir resistance-conferring neuraminidase substitution. Our results emphasize the need for local surveillance for neuraminidase inhibitor susceptibility among circulating influenza viruses.
Project description:Within 5 months after the earliest detection of human influenza A(H1N1)pdm09 virus, we found molecular and culture evidence of the virus in healthy US show pigs. The mixing of humans and pigs at swine shows possibly could further the geographic and cross-species spread of influenza A viruses.
Project description:We collected 325 nasal swabs from freshly slaughtered previously healthy pigs from October 2012 through January 2014 in a slaughterhouse near Lomé in Togo. Influenza A virus genome was detected by RT-PCR in 2.5-12.3% of the pooled samples, and results of hemagglutinin subtyping RT-PCR assays showed the virus in all the positive pools to be A(H1N1)pdm09. Virus was isolated on MDCK cells from a representative specimen, A/swine/Togo/ONA32/2013(H1N1). The isolate was fully sequenced and harbored eight genes similar to A(H1N1)pdm09 virus genes circulating in humans in 2012-2013, suggesting human-to-swine transmission of the pathogen.
Project description:We conducted a longitudinal community cohort study of healthy adults in the UK. We found significantly higher incidence of influenza A(H1N1)pdm09 infection in 2010-11 than in 2009-10, a substantial proportion of subclinical infection, and higher risk for infection during 2010-11 among persons with lower preinfection antibody titers.
Project description:The pandemic influenza A(H1N1)pdm09 virus has been reported in Peru since 2009. We report the whole-genome sequence analysis of a viral isolate from an infection case that occurred during an influenza outbreak in 2013. This strain shows novel hemagglutinin (HA) mutations that may cause an antigenic drift that diminishes the protective effect of the vaccine.
Project description:BackgroundOseltamivir has been used as a drug of choice for the prophylaxis and treatment of human influenza A(H1N1)pdm09 infection across the world. However, the most frequently identified oseltamivir resistant virus, influenza A(H1N1)pdm09, exhibit the H275Y substitution in NA gene.ObjectivesThis study aimed to determine the prevalence and phylogenetic relationships of oseltamivir resistance in influenza A(H1N1)pdm09 viruses isolated in Shiraz, Iran.Patients and methodsThroat swab samples were collected from 200 patients with influenza-like disease from December 2012 until February 2013. A total of 77 influenza A(H1N1)pdm09 positive strains were identified by real-time polymerase chain reaction (PCR). Oseltamivir resistance was detected using quantal assay and nested-PCR method. The NA gene sequencing was conducted to detect oseltamivir-resistant mutants and establish the phylogeny of the prevalent influenza variants.ResultsOur results revealed that A(H1N1)pdm09 viruses present in these samples were susceptible to oseltamivir, and contained 5 site specific mutations (V13G, V106I, V241I, N248D, and N369K) in NA gene. These mutations correlated with increasing expression and enzymatic activity of NA protein in the influenza A(H1N1)pdm09 viruses, which were closely related to a main influenza A(H1N1)pdm09 cluster isolated around the world.ConclusionsA(H1N1)pdm09 viruses, identified in this study in Shiraz, Iran, contained 5 site specific mutations and were susceptible to oseltamivir.
Project description:BackgroundThe predominant strain during the 2013-2014 influenza season was 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09). This vaccine-component has remained unchanged from 2009.MethodsThe US Flu Vaccine Effectiveness Network enrolled subjects aged ≥6 months with medically attended acute respiratory illness (MAARI), including cough, with illness onset ≤7 days before enrollment. Influenza was confirmed by reverse-transcription polymerase chain reaction (RT-PCR). We determined the effectiveness of trivalent or quadrivalent inactivated influenza vaccine (IIV) among subjects ages ≥6 months and the effectiveness of quadrivalent live attenuated influenza vaccine (LAIV4) among children aged 2-17 years, using a test-negative design. The effect of prior receipt of any A(H1N1)pdm09-containing vaccine since 2009 on the effectiveness of current-season vaccine was assessed.ResultsWe enrolled 5999 subjects; 5637 (94%) were analyzed; 18% had RT-PCR-confirmed A(H1N1)pdm09-related MAARI. Overall, the effectiveness of vaccine against A(H1N1)pdm09-related MAARI was 54% (95% confidence interval [CI], 46%-61%). Among fully vaccinated children aged 2-17 years, the effectiveness of LAIV4 was 17% (95% CI, -39% to 51%) and the effectiveness of IIV was 60% (95% CI, 36%-74%). Subjects aged ≥9 years showed significant residual protection of any prior A(H1N1)pdm09-containing vaccine dose(s) received since 2009, as did children <9 years old considered fully vaccinated by prior season.ConclusionsDuring 2013-2014, IIV was significantly effective against A(H1N1)pdm09. Lack of LAIV4 effectiveness in children highlights the importance of continued annual monitoring of effectiveness of influenza vaccines in the United States.
Project description:Here we report full-length sequencing of the first large set of influenza A(H1N1)pdm09 virus genomes isolated in Finland between the years 2009 and 2013 and discuss the advantages and needs of influenza virus sequencing efforts.
Project description:ObjectivesTo review neurological complications after the influenza A (H1N1) pdm09, highlighting the clinical differences between patients with post-vaccine or viral infection.DesignA search on Medline, Ovid, EMBASE, and PubMed databases using the keywords “neurological complications of Influenza AH1N1” or “post-vaccine Influenza AH1N1.”SettingOnly papers written in English, Spanish, German, French, Portuguese, and Italian published from March 2009 to December 2012 were included.SampleWe included 104 articles presenting a total of 1636 patient cases. In addition, two cases of influenza vaccine-related neurological events from our neurological care center, arising during the period of study, were also included.Main outcome measuresDemographic data and clinical diagnosis of neurological complications and outcomes: death, neurological sequelae or recovery after influenza A (H1N1) pdm09 vaccine or infection.ResultsThe retrieved cases were divided into two groups: the postvaccination group, with 287 patients, and the viral infection group, with 1349 patients. Most patients in the first group were adults. The main neurological complications were Guillain-Barre syndrome (GBS) or polyneuropathy (125), and seizures (23). All patients survived. Pediatric patients were predominant in the viral infection group. In this group, 60 patients (4.7%) died and 52 (30.1%) developed permanent sequelae. A wide spectrum of neurological complications was observed.ConclusionsFatal cases and severe, permanent, neurological sequelae were observed in the infection group only. Clinical outcome was more favorable in the post-vaccination group. In this context, the relevance of an accurate neurological evaluation is demonstrated for all suspicious cases, as well as the need of an appropriate long-term clinical and imaging follow-up of infection and post-vaccination events related to influenza A (H1N1) pdm09, to clearly estimate the magnitude of neurological complications leading to permanent disability.
Project description:The 2012 and 2013 annual influenza epidemics in Mexico were characterized by presenting different seasonal patterns. In 2012 the A(H1N1)pdm09 virus caused a high incidence of influenza infections after a two-year period of low circulation; whereas the 2013 epidemic presented circulation of the A(H1N1)pdm09 virus throughout the year. We have characterized the molecular composition of the Hemagglutinin (HA) and Neuraminidase (NA) genes of the A(H1N1)pdm09 virus from both epidemic seasons, emphasizing the genetic characteristics of viruses isolated from Yucatan in Southern Mexico. The molecular analysis of viruses from the 2012 revealed that all viruses from Mexico were predominantly grouped in clade 7. Strikingly, the molecular characterization of viruses from 2013 revealed that viruses circulating in Yucatan were genetically different to viruses from other regions of Mexico. In fact, we identified the occurrence of two genetic variants containing relevant mutations at both the HA and NA surface antigens. There was a difference on the temporal circulation of each genetic variant, viruses containing the mutations HA-A141T / NA-N341S were detected in May, June and July; whereas viruses containing the mutations HA-S162I / NA-L206S circulated in August and September. We discuss the significance of these novel genetic changes.