Unknown

Dataset Information

0

Laquinimod reduces neuroaxonal injury through inhibiting microglial activation.


ABSTRACT:

Objective

Laquinimod is an emerging oral medication for multiple sclerosis (MS) that reduces brain atrophy and progression of disability in two Phase III clinical trials. The mechanism of these effects is unclear. Persistent activation of microglia occurs in MS and contributes to injury. Thus, we investigated whether laquinimod alters properties of microglia in culture and in experimental autoimmune encephalomyelitis (EAE), and whether this reduces neurodegeneration.

Methods

Microglia were cultured from human brains. EAE was induced in mice.

Results

The activation of human microglia increased levels of several pro- and anti-inflammatory cytokines and these elevations were attenuated by pretreatment with laquinimod. Laquinimod prevented the decline in activated microglia of miR124a, a microRNA implicated in maintaining microglia quiescence, and reduced the activity of several signaling pathways (Jun-N-terminal kinase, ribosomal S6 kinase, and AKT/protein kinase B) in activated microglia. In EAE, axonal injury correlated with accumulation of microglia/macrophages in the spinal cord. EAE mice treated with laquinimod before onset of clinical signs subsequently had reduced microglia/macrophage density and axonal injury. Remarkably, when laquinimod treatment was initiated well into the disease course, the progressive demyelination, and axonal loss was halted. Besides inflammatory molecules associated with microglia, the level of inducible nitric oxide (NO) synthase capable of producing free radical toxicity was attenuated by laquinimod in EAE mice. Finally, in coculture where microglia activation caused neuronal death, laquinimod decreased NO levels, and neurotoxicity.

Interpretation

Laquinimod is a novel inhibitor of microglial activation that lowers microglia-induced neuronal death in culture and axonal injury/loss in EAE.

SUBMITTER: Mishra MK 

PROVIDER: S-EPMC4184669 | biostudies-literature | 2014 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Laquinimod reduces neuroaxonal injury through inhibiting microglial activation.

Mishra Manoj Kumar MK   Wang Janet J   Keough Michael B MB   Fan Yan Y   Silva Claudia C   Sloka Scott S   Hayardeny Liat L   Brück Wolfgang W   Yong V Wee VW  

Annals of clinical and translational neurology 20140526 6


<h4>Objective</h4>Laquinimod is an emerging oral medication for multiple sclerosis (MS) that reduces brain atrophy and progression of disability in two Phase III clinical trials. The mechanism of these effects is unclear. Persistent activation of microglia occurs in MS and contributes to injury. Thus, we investigated whether laquinimod alters properties of microglia in culture and in experimental autoimmune encephalomyelitis (EAE), and whether this reduces neurodegeneration.<h4>Methods</h4>Micro  ...[more]

Similar Datasets

| S-EPMC9490947 | biostudies-literature
| S-EPMC7375814 | biostudies-literature
| S-EPMC6530569 | biostudies-literature
| S-EPMC9560932 | biostudies-literature
| S-EPMC5487478 | biostudies-literature
| S-EPMC10067773 | biostudies-literature
| S-EPMC11332453 | biostudies-literature
| S-EPMC4620555 | biostudies-literature
| S-EPMC8607465 | biostudies-literature
| S-EPMC8026688 | biostudies-literature