Unknown

Dataset Information

0

Quantifying uncertainty in brain network measures using Bayesian connectomics.


ABSTRACT: The wiring diagram of the human brain can be described in terms of graph measures that characterize structural regularities. These measures require an estimate of whole-brain structural connectivity for which one may resort to deterministic or thresholded probabilistic streamlining procedures. While these procedures have provided important insights about the characteristics of human brain networks, they ultimately rely on unwarranted assumptions such as those of noise-free data or the use of an arbitrary threshold. Therefore, resulting structural connectivity estimates as well as derived graph measures fail to fully take into account the inherent uncertainty in the structural estimate. In this paper, we illustrate an easy way of obtaining posterior distributions over graph metrics using Bayesian inference. It is shown that this posterior distribution can be used to quantify uncertainty about graph-theoretical measures at the single subject level, thereby providing a more nuanced view of the graph-theoretical properties of human brain connectivity. We refer to this model-based approach to connectivity analysis as Bayesian connectomics.

SUBMITTER: Janssen RJ 

PROVIDER: S-EPMC4189434 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Quantifying uncertainty in brain network measures using Bayesian connectomics.

Janssen Ronald J RJ   Hinne Max M   Heskes Tom T   van Gerven Marcel A J MA  

Frontiers in computational neuroscience 20141008


The wiring diagram of the human brain can be described in terms of graph measures that characterize structural regularities. These measures require an estimate of whole-brain structural connectivity for which one may resort to deterministic or thresholded probabilistic streamlining procedures. While these procedures have provided important insights about the characteristics of human brain networks, they ultimately rely on unwarranted assumptions such as those of noise-free data or the use of an  ...[more]

Similar Datasets

| S-EPMC4593693 | biostudies-literature
| S-EPMC7443707 | biostudies-literature
| S-EPMC7738161 | biostudies-literature
| S-EPMC4996738 | biostudies-literature
| S-EPMC8525832 | biostudies-literature
| S-EPMC7053251 | biostudies-literature
| S-EPMC5963822 | biostudies-other
| S-EPMC2820641 | biostudies-literature
| S-EPMC5213837 | biostudies-other
| S-EPMC6798057 | biostudies-literature