Unknown

Dataset Information

0

Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4).


ABSTRACT: Recent small RNA sequencing data has uncovered 3' end modification of mature microRNAs (miRNAs). This non-templated nucleotide addition can impact miRNA gene regulatory networks through the control of miRNA stability or by interfering with the repression of target mRNAs. The miRNA modifying enzymes responsible for this regulation remain largely uncharacterized. Here we describe the ability for two related terminal uridyl transferases (TUTases), Zcchc6 (TUT7) and Zcchc11 (TUT4), to 3' mono-uridylate a specific subset of miRNAs involved in cell differentiation and Homeobox (Hox) gene control. Zcchc6/11 selectively uridylates these miRNAs in vitro, and we biochemically define a bipartite sequence motif that is necessary and sufficient to confer Zcchc6/11 catalyzed uridylation. Depletion of these TUTases in cultured cells causes the selective loss of 3' mono-uridylation of many of the same miRNAs. Upon TUTase-dependent loss of uridylation, we observe a concomitant increase in non-templated 3' mono-adenylation. Furthermore, TUTase inhibition in Zebrafish embryos causes developmental defects and aberrant Hox expression. Our results uncover the molecular basis for selective miRNA mono-uridylation by Zcchc6/11, highlight the precise control of different 3' miRNA modifications in cells and have implications for miRNA and Hox gene regulation during development.

SUBMITTER: Thornton JE 

PROVIDER: S-EPMC4191393 | biostudies-literature | 2014 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4).

Thornton James E JE   Du Peng P   Jing Lili L   Sjekloca Ljiljana L   Lin Shuibin S   Grossi Elena E   Sliz Piotr P   Zon Leonard I LI   Gregory Richard I RI  

Nucleic acids research 20140915 18


Recent small RNA sequencing data has uncovered 3' end modification of mature microRNAs (miRNAs). This non-templated nucleotide addition can impact miRNA gene regulatory networks through the control of miRNA stability or by interfering with the repression of target mRNAs. The miRNA modifying enzymes responsible for this regulation remain largely uncharacterized. Here we describe the ability for two related terminal uridyl transferases (TUTases), Zcchc6 (TUT7) and Zcchc11 (TUT4), to 3' mono-uridyl  ...[more]

Similar Datasets

| S-EPMC4720960 | biostudies-literature
| S-EPMC2759306 | biostudies-literature
2014-12-04 | GSE59628 | GEO
2014-12-04 | E-GEOD-59628 | biostudies-arrayexpress
2014-12-04 | GSE59627 | GEO
2014-12-04 | GSE59626 | GEO
2014-12-04 | E-GEOD-59626 | biostudies-arrayexpress
2014-12-04 | E-GEOD-59627 | biostudies-arrayexpress
| S-EPMC6191937 | biostudies-literature
| S-EPMC5542866 | biostudies-literature