Project description:Bartonella quintana has been considered to be specifically adapted to humans. Our isolation of the organism from 2 of 36 captive rhesus macaques in China and finding antibodies against B. quintana in 12 of 33 indicates that the reservoir hosts of B. quintana may include primates other than humans.
Project description:Sequences from the putative 5' nontranslated region of GB virus A were isolated from mystax, owl monkeys, and tamarins. Though sequences of isolates from each animal species are virtually identical at the nucleotide level (95%), isolates from different species are dramatically different (52 to 79% identical) and genetically cluster on this basis.
Project description:Multiple novel simian adenoviruses have been isolated over the past years and their potential to cross the species barrier and infect the human population is an ever present threat. Here we describe the isolation and full genome sequencing of a novel simian adenovirus (SAdV) isolated from the urine of two independent, never co-housed, late stage simian immunodeficiency virus (SIV)-infected rhesus macaques. The viral genome sequences revealed a novel type with a unique genome length, GC content, E3 region and DNA polymerase amino acid sequence that is sufficiently distinct from all currently known human- or simian adenovirus species to warrant classifying these isolates as a novel species of simian adenovirus. This new species, termed Simian mastadenovirus D (SAdV-D), displays the standard genome organization for the genus Mastadenovirus containing only one copy of the fiber gene which sets it apart from the old world monkey adenovirus species HAdV-G, SAdV-B and SAdV-C.
Project description:An association between certain Campylobacter species and enterocolitis in humans and nonhuman primates is well established, but the association between cytolethal distending toxin and disease is incompletely understood. The purpose of the present study was to examine Campylobacter species isolated from captive conventionally raised macaque monkeys for the presence of the cdtB gene and for cytolethal distending toxin activity. The identity of each isolate was confirmed on the basis of phenotypic and genotypic analyses. The presence of cytolethal distending toxin was confirmed on the basis of characteristic morphological changes in HeLa cells incubated with filter-sterilized whole-cell lysates of reference and monkey Campylobacter isolates and examinations by light microscopy, confocal microscopy, and flow cytometry. Although cdtB gene sequences were found in both Campylobacter jejuni and Campylobacter coli, the production of cytolethal distending toxin correlated positively (P < 0.0001) only with C. jejuni. We concluded that cytolethal distending toxin activity is a characteristic of C. jejuni. Our C. jejuni cdtB gene-specific PCR assay might be of assistance for differentiating toxigenic C. jejuni from C. coli in clinical laboratories.
Project description:Although up to 50% of African green monkeys (AGMs) are infected by simian immunodeficiency viruses (SIV) in their natural habitat, they remain asymptomatic carriers of these lentiviruses. They provide an attractive model to study not only the origin but also the link among genetic variation, host-virus adaptation, and pathogenicity of primate lentiviruses. SIVagm have been isolated from three species of AGM: the vervet (Cercopithecus pygerythrus), the grivet (Cercopithecus aethiops), and the sabaeus (Cercopithecus sabaeus) monkey. We studied four new SIVagm isolates from a fourth AGM species, the tantalus monkey (Cercopithecus tantalus), caught in the Central African Republic, and four new isolates from feral sabaeus monkeys from Senegal. Antigenic properties and partial env sequences were used to evaluate the diversity among these isolates. Alignment of env sequences in SIVagm isolated from tantalus and sabaeus monkeys permitted detailed mapping of the variable and conserved domains in the external glycoprotein. Genetic distances indicated that SIVagm isolates from tantalus monkeys are the most divergent among SIVagm in feral AGMs in Africa. The fact that AGMs are infected by four distinct lentiviruses, each specific for a single AGM species, supports the hypothesis of a coevolution of these viruses and their natural hosts and suggests that SIV transmission is a rare event among separated AGM species in the wild.
Project description:BACKGROUND:Vaccine development in human Plasmodium falciparum malaria has been hampered by the exceptionally high levels of CD8(+) T cells required for efficacy. Use of potently immunogenic human adenoviruses as vaccine vectors could overcome this problem, but these are limited by preexisting immunity to human adenoviruses. METHODS:From 2007 to 2010, we undertook a phase I dose and route finding study of a new malaria vaccine, a replication-incompetent chimpanzee adenovirus 63 (ChAd63) encoding the preerythrocytic insert multiple epitope thrombospondin-related adhesion protein (ME-TRAP; n?=?54 vaccinees) administered alone (n?=?28) or with a modified vaccinia virus Ankara (MVA) ME-TRAP booster immunization 8 weeks later (n?=?26). We observed an excellent safety profile. High levels of TRAP antigen-specific CD8(+) and CD4(+) T cells, as detected by interferon ? enzyme-linked immunospot assay and flow cytometry, were induced by intramuscular ChAd63 ME-TRAP immunization at doses of 5?×?10(10) viral particles and above. Subsequent administration of MVA ME-TRAP boosted responses to exceptionally high levels, and responses were maintained for up to 30 months postvaccination. CONCLUSIONS:The ChAd63 chimpanzee adenovirus vector appears safe and highly immunogenic, providing a viable alternative to human adenoviruses as vaccine vectors for human use. CLINICAL TRIALS REGISTRATION:NCT00890019.
Project description:BACKGROUND:Adenoviruses play an important role as human pathogens, though most infections are believed to be asymptomatic. The over 100 human adenovirus types are classified into seven species (A-G), some of which include simian adenoviruses. Recent findings have highlighted that simian adenoviruses have a zoonotic potential and that some human adenoviruses are likely the result of relatively recent spillover events. METHODS:In order to evaluate the risks associated with primates hunted and sold as bushmeat, multiple samples from 24 freshly killed monkeys were collected in the Republic of the Congo and tested for adenovirus DNA by PCRs targeting the conserved DNA polymerase and hexon genes. RESULTS:The DNA of a novel simian adenovirus was detected in a moustached monkey (Cercopithecus cephus) by the DNA polymerase PCR, but not by the hexon PCR. The 275 nucleotide amplicon was most closely related to members of the Human mastadenovirus F species (93% HAdV-40 and 89% HAdV-41 amino acid identity), rather than to other known simian adenoviruses. CONCLUSIONS:The phylogenetic clustering with Human mastadenovirus F sequences suggests a common ancestor, more recent than the last common ancestor of humans and moustached monkeys. The findings increase concerns about the zoonotic potential of simian adenoviruses and highlight the need for more research and surveillance on the issue.
Project description:To date, at least three lineages (Lineage 1-3) that are related to recombinant human adenovirus species C (HAdV-C) have been identified in China. Among them, Lineage 1 includes two Chinese strains, strain KR699642-CHN-20093 (CBJ11) and strain MF315029-CHN-2013 (BJ09), which were collected in Beijing in 2009 and 2013, respectively. Herein, we performed genomic and bioinformatics analysis of two HAdV-C strains (strain SX-2000-140 and strain SX-2004-327) that were isolated from the feces of two healthy children in Shanxi province of China in 2000 and 2004, respectively. Results revealed that the genomes of both Shanxi strains had the highest homology to two Chinese HAdV-C strains belonging to Lineage 1 and harbored the genetic elements of these two strains, thereby presuming that Lineage1 has been circulated in mainland of China for decades. In addition, though the viruses in Lineage 1 showed slightly different recombinant patterns resulting from the recombinant events among the five types of HAdV-C, all the Lineage 1 viruses shared the highest sequence similarities with the HAdV-2 prototype strain (NC_001405-USA-1953) across the genome, especially in the major capsid genes including hexon, and fiber. These results indicated that Lineage 1 viruses that were associated with recombinants shared a common ancestor that is closely related to the HAdV-2 virus. Our current findings confirmed that frequent recombination among the different HAdV-C types might be an important driving force for the molecular evolution of HAdV-C. Therefore, there is a strong need for further comprehensive and systematic monitoring, detection, and research on HAdV-C.
Project description:Recently, gut-dwelling bifidobacteria from chimpanzees, which are phylogenetically close to humans and have feeding habits similar to humans, have been frequently investigated. Given this, we speculated that like humans, chimpanzees would have a unique diversity of bifidobacteria. We herein describe a taxonomically novel member of bifidobacteria isolated from fecal samples of captive chimpanzees. Bifidobacteria were detected in all fecal samples by quantitative polymerase chain reaction. A Bifidobacterium pseudolongum-like species, which could not be detected using B. pseudolongum-specific primers targeting the groEL gene sequence, was dominant in the feces of five chimpanzees. Seven bifidobacterial strains were isolated from this group of five chimpanzees, and all isolates were identified as B. pseudolongum. B. pseudolongum has previously often been isolated from non-primate animals as well as humans; however, here we demonstrate its presence in a nonhuman primate species.
Project description:Nearly complete sequences of simian immunodeficiency viruses (SIVs) infecting 18 different nonhuman primate species in sub-Saharan Africa have now been reported; yet, our understanding of the origins, evolutionary history, and geographic distribution of these viruses still remains fragmentary. Here, we report the molecular characterization of a lentivirus (SIVdeb) naturally infecting De Brazza's monkeys (Cercopithecus neglectus). Complete SIVdeb genomes (9,158 and 9227 bp in length) were amplified from uncultured blood mononuclear cell DNA of two wild-caught De Brazza's monkeys from Cameroon. In addition, partial pol sequences (650 bp) were amplified from four offspring of De Brazza's monkeys originally caught in the wild in Uganda. Full-length (9068 bp) and partial pol (650 bp) SIVsyk sequences were also amplified from Sykes's monkeys (Cercopithecus albogularis) from Kenya. Analysis of these sequences identified a new SIV clade (SIVdeb), which differed from previously characterized SIVs at 40 to 50% of sites in Pol protein sequences. The viruses most closely related to SIVdeb were SIVsyk and members of the SIVgsn/SIVmus/SIVmon group of viruses infecting greater spot-nosed monkeys (Cercopithecus nictitans), mustached monkeys (Cercopithecus cephus), and mona monkeys (Cercopithecus mona), respectively. In phylogenetic trees of concatenated protein sequences, SIVdeb, SIVsyk, and SIVgsn/SIVmus/SIVmon clustered together, and this relationship was highly significant in all major coding regions. Members of this virus group also shared the same number of cysteine residues in their extracellular envelope glycoprotein and a high-affinity AIP1 binding site (YPD/SL) in their p6 Gag protein, as well as a unique transactivation response element in their viral long terminal repeat; however, SIVdeb and SIVsyk, unlike SIVgsn, SIVmon, and SIVmus, did not encode a vpu gene. These data indicate that De Brazza's monkeys are naturally infected with SIVdeb, that this infection is prevalent in different areas of the species' habitat, and that geographically diverse SIVdeb strains cluster in a single virus group. The consistent clustering of SIVdeb with SIVsyk and the SIVmon/SIVmus/SIVgsn group also suggests that these viruses have evolved from a common ancestor that likely infected a Cercopithecus host in the distant past. The vpu gene appears to have been acquired by a subset of these Cercopithecus viruses after the divergence of SIVdeb and SIVsyk.