Generation of functional, antigen-specific CD8+ human T cells from cord blood stem cells using exogenous Notch and tetramer-TCR signaling.
Ontology highlight
ABSTRACT: In vitro differentiation of mouse and human stem cells into early T cells has been successfully demonstrated using artificial Notch signaling systems. However, generation of mature, antigen-specific, functional T cells, directly from human stem cells has remained elusive, except when using stromal coculture of stem cells retrovirally transfected with antigen-specific T cell receptors (TCRs). Here we show that human umbilical cord blood (UCB)-derived CD34+CD38-/low hematopoietic stem cells can be successfully differentiated into functional, antigen-specific cytotoxic CD8+ T cells without direct stromal coculture or retroviral TCR transfection. Surface-immobilized Notch ligands (DLL1) and stromal cell conditioned medium successfully induced the development of CD1a+CD7+ and CD4+CD8+ early T cells. These cells, upon continued culture with cytomegalovirus (CMV) or influenza-A virus M1 (GIL) epitope-loaded human leukocyte antigen (HLA)-A*0201 tetramers, resulted in the generation of a polyclonal population of CMV-specific or GIL-specific CD8+ T cells, respectively. Upon further activation with antigen-loaded target cells, these antigen-specific, stem cell-derived T cells exhibited cytolytic functionality, specifically CD107a surface mobilization, interferon gamma (IFNg) production, and Granzyme B secretion. Such scalable, in vitro generation of functional, antigen-specific T cells from human stem cells could eventually provide a readily available cell source for adoptive transfer immunotherapies and also allow better understanding of human T cell development.
SUBMITTER: Fernandez I
PROVIDER: S-EPMC4193361 | biostudies-literature | 2014 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA