Impact of sequence on the molecular assembly of short amyloid peptides.
Ontology highlight
ABSTRACT: The goal of this work is to understand how the sequence of a protein affects the likelihood that it will form an amyloid fibril and the kinetics along the fibrillization pathway. The focus is on very short fragments of amyloid proteins since these play a role in the fibrillization of the parent protein and can form fibrils themselves. Discontinuous molecular dynamics simulations using the PRIME20 force field were performed of the aggregation of 48-peptide systems containing SNQNNF (PrP (170-175)), SSTSAA (RNaseA(15-20)), MVGGVV (A?(35-40)), GGVVIA (A?(37-42)), and MVGGVVIA (A?(35-42)). In our simulations SNQQNF, SSTTSAA, and MVGGVV form large numbers of fibrillar structures spontaneously (as in experiment). GGVVIA forms ?-sheets that do not stack into fibrils (unlike experiment). The combination sequence MVGGVVIA forms less fibrils than MVGGVV, hindered by the presence of the hydrophobic residues at the C-terminal. Analysis of the simulation kinetics and energetics reveals why MVGGVV forms fibrils and GGVVIA does not, and why adding I and A to MVGGVVIA reduces fibrillization and enhances amorphous aggregation into oligomeric structures. The latter helps explain why A?(1-42) assembles into more complex oligomers than A?(1-40), a consequence of which is that it is more strongly associated with Alzheimer's disease.
SUBMITTER: Wagoner VA
PROVIDER: S-EPMC4217531 | biostudies-literature | 2014 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA