Nanometre-scale thermometry in a living cell.
Ontology highlight
ABSTRACT: Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology. In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical and chemical research. Possibilities range from the temperature-induced control of gene expression and tumour metabolism to the cell-selective treatment of disease and the study of heat dissipation in integrated circuits. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the subcellular level. Here we demonstrate a new approach to nanoscale thermometry that uses coherent manipulation of the electronic spin associated with nitrogen-vacancy colour centres in diamond. Our technique makes it possible to detect temperature variations as small as 1.8?mK (a sensitivity of 9?mK?Hz(-1/2)) in an ultrapure bulk diamond sample. Using nitrogen-vacancy centres in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment on length scales as short as 200?nanometres. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the subcellular level, enabling unique potential applications in life sciences.
SUBMITTER: Kucsko G
PROVIDER: S-EPMC4221854 | biostudies-literature | 2013 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA