Unknown

Dataset Information

0

MiRNAome analysis of the mammalian neuronal nicotinic acetylcholine receptor gene family.


ABSTRACT: Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3'-untranslated regions (3' UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3' UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3' UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR ?2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family.

SUBMITTER: Hogan EM 

PROVIDER: S-EPMC4238110 | biostudies-literature | 2014 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

miRNAome analysis of the mammalian neuronal nicotinic acetylcholine receptor gene family.

Hogan Eric M EM   Casserly Alison P AP   Scofield Michael D MD   Mou Zhongming Z   Zhao-Shea Rubing R   Johnson Chris W CW   Tapper Andrew R AR   Gardner Paul D PD  

RNA (New York, N.Y.) 20141024 12


Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and  ...[more]

Similar Datasets

| S-EPMC2045683 | biostudies-literature
| S-EPMC4814119 | biostudies-literature
| S-EPMC6024932 | biostudies-literature
| S-EPMC1626644 | biostudies-literature
| S-EPMC1217504 | biostudies-other
| S-EPMC153771 | biostudies-literature
| S-EPMC6301012 | biostudies-literature
| S-EPMC2972647 | biostudies-literature
| S-EPMC7723979 | biostudies-literature
| S-EPMC2760105 | biostudies-literature