Unknown

Dataset Information

0

Aberrant glycosylation and localization of polycystin-1 cause polycystic kidney in an AQP11 knockout model.


ABSTRACT: We previously reported that disruption of the aquaporin-11 (AQP11) gene in mice resulted in cystogenesis in the kidney. In this study, we aimed to clarify the mechanism of cystogenesis in AQP11(-/-) mice. To enable the analyses of AQP11 at the protein level in vivo, AQP11 BAC transgenic mice (Tg(AQP11)) that express 3×HA-tagged AQP11 protein were generated. This AQP11 localized to the endoplasmic reticulum (ER) of proximal tubule cells in Tg(AQP11) mice and rescued renal cystogenesis in AQP11(-/-) mice. Therefore, we hypothesized that the absence of AQP11 in the ER could result in impaired quality control and aberrant trafficking of polycystin-1 (PC-1) and polycystin-2 (PC-2). Compared with kidneys of wild-type mice, AQP11(-/-) kidneys exhibited increased protein expression levels of PC-1 and decreased protein expression levels of PC-2. Moreover, PC-1 isolated from AQP11(-/-) mice displayed an altered electrophoretic mobility caused by impaired N-glycosylation processing, and density gradient centrifugation of kidney homogenate and in vivo protein biotinylation revealed impaired membrane trafficking of PC-1 in these mice. Finally, we showed that the Pkd1(+/-) background increased the severity of cystogenesis in AQP11(-/-) mouse kidneys, indicating that PC-1 is involved in the mechanism of cystogenesis in AQP11(-/-) mice. Additionally, the primary cilia of proximal tubules were elongated in AQP11(-/-) mice. Taken together, these data show that impaired glycosylation processing and aberrant membrane trafficking of PC-1 in AQP11(-/-) mice could be a key mechanism of cystogenesis in AQP11(-/-) mice.

SUBMITTER: Inoue Y 

PROVIDER: S-EPMC4243341 | biostudies-literature | 2014 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Aberrant glycosylation and localization of polycystin-1 cause polycystic kidney in an AQP11 knockout model.

Inoue Yuichi Y   Sohara Eisei E   Kobayashi Katsuki K   Chiga Motoko M   Rai Tatemitsu T   Ishibashi Kenichi K   Horie Shigeo S   Su Xuefeng X   Zhou Jing J   Sasaki Sei S   Uchida Shinichi S  

Journal of the American Society of Nephrology : JASN 20140522 12


We previously reported that disruption of the aquaporin-11 (AQP11) gene in mice resulted in cystogenesis in the kidney. In this study, we aimed to clarify the mechanism of cystogenesis in AQP11(-/-) mice. To enable the analyses of AQP11 at the protein level in vivo, AQP11 BAC transgenic mice (Tg(AQP11)) that express 3×HA-tagged AQP11 protein were generated. This AQP11 localized to the endoplasmic reticulum (ER) of proximal tubule cells in Tg(AQP11) mice and rescued renal cystogenesis in AQP11(-/  ...[more]

Similar Datasets

| S-EPMC5709289 | biostudies-literature
| S-EPMC6731238 | biostudies-literature
| S-EPMC3484456 | biostudies-literature
| S-EPMC8729842 | biostudies-literature
| S-EPMC363138 | biostudies-literature
| S-EPMC2781709 | biostudies-literature
| S-EPMC5187793 | biostudies-other
| S-EPMC5820265 | biostudies-literature
| S-EPMC3013531 | biostudies-literature
| S-EPMC10932423 | biostudies-literature