Unknown

Dataset Information

0

SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination.


ABSTRACT: Intracellular accumulation of the abnormally modified tau is hallmark pathology of Alzheimer's disease (AD), but the mechanism leading to tau aggregation is not fully characterized. Here, we studied the effects of tau SUMOylation on its phosphorylation, ubiquitination, and degradation. We show that tau SUMOylation induces tau hyperphosphorylation at multiple AD-associated sites, whereas site-specific mutagenesis of tau at K340R (the SUMOylation site) or simultaneous inhibition of tau SUMOylation by ginkgolic acid abolishes the effect of small ubiquitin-like modifier protein 1 (SUMO-1). Conversely, tau hyperphosphorylation promotes its SUMOylation; the latter in turn inhibits tau degradation with reduction of solubility and ubiquitination of tau proteins. Furthermore, the enhanced SUMO-immunoreactivity, costained with the hyperphosphorylated tau, is detected in cerebral cortex of the AD brains, and ?-amyloid exposure of rat primary hippocampal neurons induces a dose-dependent SUMOylation of the hyperphosphorylated tau. Our findings suggest that tau SUMOylation reciprocally stimulates its phosphorylation and inhibits the ubiquitination-mediated tau degradation, which provides a new insight into the AD-like tau accumulation.

SUBMITTER: Luo HB 

PROVIDER: S-EPMC4246270 | biostudies-literature | 2014 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination.

Luo Hong-Bin HB   Xia Yi-Yuan YY   Shu Xi-Ji XJ   Liu Zan-Chao ZC   Feng Ye Y   Liu Xing-Hua XH   Yu Guang G   Yin Gang G   Xiong Yan-Si YS   Zeng Kuan K   Jiang Jun J   Ye Keqiang K   Wang Xiao-Chuan XC   Wang Jian-Zhi JZ  

Proceedings of the National Academy of Sciences of the United States of America 20141105 46


Intracellular accumulation of the abnormally modified tau is hallmark pathology of Alzheimer's disease (AD), but the mechanism leading to tau aggregation is not fully characterized. Here, we studied the effects of tau SUMOylation on its phosphorylation, ubiquitination, and degradation. We show that tau SUMOylation induces tau hyperphosphorylation at multiple AD-associated sites, whereas site-specific mutagenesis of tau at K340R (the SUMOylation site) or simultaneous inhibition of tau SUMOylation  ...[more]

Similar Datasets

| S-EPMC8773821 | biostudies-literature
| S-EPMC5740625 | biostudies-literature
| S-EPMC7853145 | biostudies-literature
| S-EPMC3815749 | biostudies-literature
| S-EPMC3684773 | biostudies-literature
| S-EPMC9193967 | biostudies-literature
| S-EPMC5653241 | biostudies-literature
| S-EPMC6726993 | biostudies-literature
| S-EPMC2626711 | biostudies-literature
| S-EPMC4794388 | biostudies-literature