Unknown

Dataset Information

0

Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes.


ABSTRACT: In cardiomyocytes, calcium is known to control gene expression at the level of transcription, whereas its role in regulating alternative splicing has not been explored. Here we report that, in mouse primary or embryonic stem cell-derived cardiomyocytes, increased calcium levels induce robust and reversible skipping of several alternative exons from endogenously expressed genes. Interestingly, we demonstrate a calcium-mediated splicing regulatory mechanism that depends on changes of histone modifications. Specifically, the regulation occurs through changes in calcium-responsive kinase activities that lead to alterations in histone modifications and subsequent changes in the transcriptional elongation rate and exon skipping. We demonstrate that increased intracellular calcium levels lead to histone hyperacetylation along the body of the genes containing calcium-responsive alternative exons by disrupting the histone deacetylase-to-histone acetyltransferase balance in the nucleus. Consequently, the RNA polymerase II elongation rate increases significantly on those genes, resulting in skipping of the alternative exons. These studies reveal a mechanism by which calcium-level changes in cardiomyocytes impact on the output of gene expression through altering alternative pre-mRNA splicing patterns.

SUBMITTER: Sharma A 

PROVIDER: S-EPMC4246288 | biostudies-literature | 2014 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes.

Sharma Alok A   Nguyen Hieu H   Geng Cuiyu C   Hinman Melissa N MN   Luo Guangbin G   Lou Hua H  

Proceedings of the National Academy of Sciences of the United States of America 20141103 46


In cardiomyocytes, calcium is known to control gene expression at the level of transcription, whereas its role in regulating alternative splicing has not been explored. Here we report that, in mouse primary or embryonic stem cell-derived cardiomyocytes, increased calcium levels induce robust and reversible skipping of several alternative exons from endogenously expressed genes. Interestingly, we demonstrate a calcium-mediated splicing regulatory mechanism that depends on changes of histone modif  ...[more]

Similar Datasets

| S-EPMC2913848 | biostudies-literature
| S-EPMC6138936 | biostudies-literature
2010-02-10 | E-GEOD-19373 | biostudies-arrayexpress
2010-02-10 | GSE19373 | GEO
| S-EPMC4179961 | biostudies-literature
| S-EPMC9410892 | biostudies-literature
| S-EPMC5078054 | biostudies-literature
| S-EPMC1270949 | biostudies-literature
| S-EPMC3169152 | biostudies-literature
| S-EPMC3032741 | biostudies-literature