Unknown

Dataset Information

0

Single mutations in sasA enable a simpler ?cikA gene network architecture with equivalent circadian properties.


ABSTRACT: The circadian input kinase of the cyanobacterium Synechococcus elongatus PCC 7942 (CikA) is important both for synchronizing circadian rhythms with external environmental cycles and for transferring temporal information between the oscillator and the global transcriptional regulator RpaA (regulator of phycobilisome-associated A). KOs of cikA result in one of the most severely altered but still rhythmic circadian phenotypes observed. We chemically mutagenized a cikA-null S. elongatus strain and screened for second-site suppressor mutations that could restore normal circadian rhythms. We identified two independent mutations in the Synechococcus adaptive sensor A (sasA) gene that produce nearly WT rhythms of gene expression, likely because they compensate for the loss of CikA on the temporal phosphorylation of RpaA. Additionally, these mutations restore the ability to reset the clock after a short dark pulse through an output-independent pathway, suggesting that SasA can influence entrainment through direct interactions with KaiC, a property previously unattributed to it. These experiments question the evolutionary advantage of integrating CikA into the cyanobacterial clock, challenge the conventional construct of separable input and output pathways, and show how easily the cell can adapt to restore phenotype in a severely compromised genetic network.

SUBMITTER: Shultzaberger RK 

PROVIDER: S-EPMC4250164 | biostudies-literature | 2014 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Single mutations in sasA enable a simpler ΔcikA gene network architecture with equivalent circadian properties.

Shultzaberger Ryan K RK   Boyd Joseph S JS   Katsuki Takeo T   Golden Susan S SS   Greenspan Ralph J RJ  

Proceedings of the National Academy of Sciences of the United States of America 20141110 47


The circadian input kinase of the cyanobacterium Synechococcus elongatus PCC 7942 (CikA) is important both for synchronizing circadian rhythms with external environmental cycles and for transferring temporal information between the oscillator and the global transcriptional regulator RpaA (regulator of phycobilisome-associated A). KOs of cikA result in one of the most severely altered but still rhythmic circadian phenotypes observed. We chemically mutagenized a cikA-null S. elongatus strain and s  ...[more]

Similar Datasets

| S-EPMC3297560 | biostudies-other
| S-EPMC6107675 | biostudies-literature
2021-04-24 | GSE113759 | GEO
| S-EPMC7039968 | biostudies-literature
| S-EPMC3750022 | biostudies-literature
| S-EPMC6467297 | biostudies-literature
| S-SCDT-EMBOJ-2021-108614 | biostudies-other
| S-EPMC3749832 | biostudies-literature
| S-EPMC1832256 | biostudies-literature
| S-EPMC8521297 | biostudies-literature