The development and application of a quantitative peptide microarray based approach to protein interaction domain specificity space.
Ontology highlight
ABSTRACT: Protein interaction domain (PID) linear peptide motif interactions direct diverse cellular processes in a specific and coordinated fashion. PID specificity, or the interaction selectivity derived from affinity preferences between possible PID-peptide pairs is the basis of this ability. Here, we develop an integrated experimental and computational cellulose peptide conjugate microarray (CPCMA) based approach for the high throughput analysis of PID specificity that provides unprecedented quantitative resolution and reproducibility. As a test system, we quantify the specificity preferences of four Src Homology 2 domains and 124 physiological phosphopeptides to produce a novel quantitative interactome. The quantitative data set covers a broad affinity range, is highly precise, and agrees well with orthogonal biophysical validation, in vivo interactions, and peptide library trained algorithm predictions. In contrast to preceding approaches, the CPCMAs proved capable of confidently assigning interactions into affinity categories, resolving the subtle affinity contributions of residue correlations, and yielded predictive peptide motif affinity matrices. Unique CPCMA enabled modes of systems level analysis reveal a physiological interactome with expected node degree value decreasing as a function of affinity, resulting in minimal high affinity binding overlap between domains; uncover that Src Homology 2 domains bind ligands with a similar average affinity yet strikingly different levels of promiscuity and binding dynamic range; and parse with unprecedented quantitative resolution contextual factors directing specificity. The CPCMA platform promises broad application within the fields of PID specificity, synthetic biology, specificity focused drug design, and network biology.
SUBMITTER: Engelmann BW
PROVIDER: S-EPMC4256512 | biostudies-literature | 2014 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA