Comparative analysis of NRF2-responsive gene expression in AcPC-1 pancreatic cancer cell line.
Ontology highlight
ABSTRACT: NRF2 is a nuclear transcription factor activated in response to oxidative stress and related with metabolizing of xenotoxic materials and ABC transporter mediated drug resistance. We studied the expression of mRNAs under the siRNA-mediated knockdown of NRF2 and tBHQ-treated condition in AsPC-1 metastatic pancreatic cancer cell line to understand the AsPC-1 specific role(s) of NRF2 and further to investigate the relationship between drug resistance and metastatic plasticity and mobility of AsPc1. Here we show that the genes of aldo-keto reductases, cytochrome P450 family, aldehyde dehydrogenase, thioredoxin reductase, ABC transporter and epoxide hydrolase responsible for drug metabolism or oxidative stress concisely responded to NRF2 stabilization and knockdown of NRF2. In addition the expression of PIR, a candidate of oncogene and KISS1, a suppressor of metastasis were affected by NRF2 stabilization and knockdown. Our result provide comprehensive understanding of NRF2 target genes of drug response, oxidative stress response and metastasis in AsPc-1 metastatic pancreatic cancer cell line.
SUBMITTER: Yi YW
PROVIDER: S-EPMC4269820 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA