Project description:Direct reprogramming of fibroblasts into cardiomyocytes is a promising approach for cardiac regeneration but still faces challenges in efficiently generating mature cardiomyocytes. Systematic optimization of reprogramming protocols requires scalable, objective methods to assess cellular phenotype beyond what is captured by transcriptional signatures alone. To address this question, we automatically segmented reprogrammed cardiomyocytes from immunofluorescence images and analyzed cell morphology. We also introduce a method to quantify sarcomere structure using Haralick texture features, called SarcOmere Texture Analysis (SOTA). We show that induced cardiac-like myocytes (iCLMs) are highly variable in expression of cardiomyocyte markers, producing subtypes that are not typically seen in vivo. Compared to neonatal mouse cardiomyocytes, iCLMs have more variable cell size and shape, have less organized sarcomere structure, and demonstrate reduced sarcomere length. Taken together, these results indicate that traditional methods of assessing cardiomyocyte reprogramming by quantifying induction of cardiomyocyte marker proteins may not be sufficient to predict functionality. The automated image analysis methods described in this study may enable more systematic approaches for improving reprogramming techniques above and beyond existing algorithms that rely heavily on transcriptome profiling.
Project description:The language used in online discussions affects who participates in them and how they respond, which can influence perceptions of public opinion. This study examines how the term white privilege affects these dimensions of online communication. In two lab experiments, US residents were given a chance to respond to a post asking their opinions about renaming college buildings. Using the term white privilege in the question decreased the percentage of whites who supported renaming. In addition, those whites who remained supportive when white privilege was mentioned were less likely to create an online post, while opposing whites and non-whites showed no significant difference. The term also led to more low-quality posts among both whites and non-whites. The relationship between question language and the way participants framed their responses was mediated by their support or opposition for renaming buildings. This suggests that the effects of the term white privilege on the content of people's responses is primarily affective. Overall, mention of white privilege seems to create internet discussions that are less constructive, more polarized, and less supportive of racially progressive policies. The findings have the potential to support meaningful online conversation and reduce online polarization.
Project description:Characterizing Mycobacterium abscessus complex (MABSC) biofilms under host-relevant conditions is essential to the design of informed therapeutic strategies targeted to this persistent, drug-tolerant, population of extracellular bacilli. Using synthetic cystic fibrosis medium (SCFM) which we previously reported to closely mimic the conditions encountered by MABSC in actual cystic fibrosis (CF) sputum and a new model of biofilm formation, we show that MABSC biofilms formed under these conditions are substantially different from previously reported biofilms grown in standard laboratory media in terms of their composition, gene expression profile and stress response. Extracellular DNA (eDNA), mannose-and glucose-containing glycans and phospholipids, rather than proteins and mycolic acids, were revealed as key extracellular matrix (ECM) constituents holding clusters of bacilli together. None of the environmental cues previously reported to impact biofilm development had any significant effect on SCFM-grown biofilms, most likely reflecting the fact that SCFM is a nutrient-rich environment in which MABSC finds a variety of ways of coping with stresses. Finally, molecular determinants were identified that may represent attractive new targets for the development of adjunct therapeutics targeting MABSC biofilms in persons with CF.
Project description:In recent years, online social networks have allowed world-wide users to meet and discuss. As guarantors of these communities, the administrators of these platforms must prevent users from adopting inappropriate behaviors. This verification task, mainly done by humans, is more and more difficult due to the ever growing amount of messages to check. Methods have been proposed to automatize this moderation process, mainly by providing approaches based on the textual content of the exchanged messages. Recent work has also shown that characteristics derived from the structure of conversations, in the form of conversational graphs, can help detecting these abusive messages. In this paper, we propose to take advantage of both sources of information by proposing fusion methods integrating content- and graph-based features. Our experiments on raw chat logs show not only that the content of the messages, but also their dynamics within a conversation contain partially complementary information, allowing performance improvements on an abusive message classification task with a final F-measure of 93.26%.
Project description:Background: This paper presents part of a wider research project called TRESCA[1] which aims to develop trust in science through the innovation of communication practices. Connected with the topic of trust in sciences, in terms of the credibility and reliability of scientific information, a part of the project was dedicated to the assessment of the explanatory power of two main elements of communication: audio and video. Particular attention was given to how these two elements relate to the perception of citizens, mediating with the latent imaginaries, emotional charges and value judgements that are the basis of the framing of relevant news, and thus with the ability of people to distinguish between correct and false communication. Methods: To investigate these aspects, an ad hoc workshop was designed and implemented in three European countries with the aim of understanding how people interpret the content of a scientific communication video with particular attention to the role of images and audio. Some probe questions were carefully selected to explore content and latent imaginaries, emotional and critical aspects also related with the trust of the communication. Results: By involving citizens in discussions and innovation efforts, many suggestions and recommendations have been collected. In today's everyday life, where the visual is very widespread, thanks to the ever-growing presence of social media, the power of images can exceed that of audio. Conclusions: Since watching a video without sound can mislead the real content of the message, especially when the source or the speaker aren't recognisable. This can have many repercussions on people's ability to evaluate the truthfulness of a news and, consequently, on the choice to grant trust - or distrust.
Project description:Interpersonal touch is a fundamental component of social interactions because it can mitigate physical and psychological distress. To reproduce the psychological and physiological effects associated with interpersonal touch, interest is growing in introducing tactile sensations to communication devices. However, it remains unknown whether physical contact with such devices can produce objectively measurable endocrine effects like real interpersonal touching can. We directly tested this possibility by examining changes in stress hormone cortisol before and after a conversation with a huggable communication device. Participants had 15-minute conversations with a remote partner that was carried out either with a huggable human-shaped device or with a mobile phone. Our experiment revealed significant reduction in the cortisol levels for those who had conversations with the huggable device. Our approach to evaluate communication media with biological markers suggests new design directions for interpersonal communication media to improve social support systems in modern highly networked societies.
Project description:Despite the progress in our understanding of genes essential for stem cell regulation and development, little is known about the factors secreted by stem cells and their effect on tissue regeneration. In particular, the factors secreted by human CD34+ cells remain to be elucidated. We have approached this challenge by performing a cytokine/growth factor microarray analysis of secreted soluble factors in medium conditioned by adherent human CD34+ cells. Thirty-two abundantly secreted factors have been identified, all of which are associated with cell proliferation, survival, tissue repair, and wound healing. The cultured CD34+ cells expressed known stem cell genes such as Nanog, Oct4, Sox2, c-kit, and HoxB4. The conditioned medium containing the secreted factors prevented cell death in liver cells exposed to liver toxin in vitro via inhibition of the caspase-3 signaling pathway. More importantly, in vivo studies using animal models of liver damage demonstrated that injection of the conditioned medium could repair damaged liver tissue (significant reduction in the necroinflammatory activity), as well as enable the animals to survive. Thus, we demonstrate that medium conditioned by human CD34+ cells has the potential for therapeutic repair of damaged tissue in vivo.
Project description:Imaging an object embedded within a scattering medium requires the correction of complex sample-induced wave distortions. Existing approaches have been designed to resolve them by optimizing signal waves recorded in each 2D image. Here, we present a volumetric image reconstruction framework that merges two fundamental degrees of freedom, the wavelength and propagation angles of light waves, based on the object momentum conservation principle. On this basis, we propose methods for exploiting the correlation of signal waves from volumetric images to better cope with multiple scattering. By constructing experimental systems scanning both wavelength and illumination angle of the light source, we demonstrated a 32-fold increase in the use of signal waves compared with that of existing 2D-based approaches and achieved ultrahigh volumetric resolution (lateral resolution: 0.41 [Formula: see text], axial resolution: 0.60 [Formula: see text]) even within complex scattering medium owing to the optimal coherent use of the broad spectral bandwidth (225 nm).
Project description:Abstract Cissus is the largest genus in Vitaceae and is mainly distributed in the tropics and subtropics. Crassulacean acid metabolism (CAM), a photosynthetic adaptation to the occurrence of succulent leaves or stems, indicates that convergent evolution occurred in response to drought stress during species radiation. Here we provide the chromosomal level assembly of Cissus rotundifolia (an endemic species in Eastern Africa) and a genome-wide comparison with grape to understand genome divergence within an ancient eudicot family. Extensive transcriptome data were produced to illustrate the genetics underpinning C. rotundifolia’s ecological adaption to seasonal aridity. The modern karyotype and smaller genome of C. rotundifolia (n = 12, 350.69 Mb/1C), which lack further whole-genome duplication, were mainly derived from gross chromosomal rearrangements such as fusions and segmental duplications, and were sculpted by a very recent burst of retrotransposon activity. Bias in local gene amplification contributed to its remarkable functional divergence from grape, and the specific proliferated genes associated with abiotic and biotic responses (e.g. HSP-20, NBS-LRR) enabled C. rotundifolia to survive in a hostile environment. Reorganization of existing enzymes of CAM characterized as diurnal expression patterns of relevant genes further confer the ability to thrive in dry savannas.