Unknown

Dataset Information

0

Hydrogen exchange differences between chemoreceptor signaling complexes localize to functionally important subdomains.


ABSTRACT: The goal of understanding mechanisms of transmembrane signaling, one of many key life processes mediated by membrane proteins, has motivated numerous studies of bacterial chemotaxis receptors. Ligand binding to the receptor causes a piston motion of an ? helix in the periplasmic and transmembrane domains, but it is unclear how the signal is then propagated through the cytoplasmic domain to control the activity of the associated kinase CheA. Recent proposals suggest that signaling in the cytoplasmic domain involves opposing changes in dynamics in different subdomains. However, it has been difficult to measure dynamics within the functional system, consisting of extended arrays of receptor complexes with two other proteins, CheA and CheW. We have combined hydrogen exchange mass spectrometry with vesicle template assembly of functional complexes of the receptor cytoplasmic domain to reveal that there are significant signaling-associated changes in exchange, and these changes localize to key regions of the receptor involved in the excitation and adaptation responses. The methylation subdomain exhibits complex changes that include slower hydrogen exchange in complexes in a kinase-activating state, which may be partially consistent with proposals that this subdomain is stabilized in this state. The signaling subdomain exhibits significant protection from hydrogen exchange in complexes in a kinase-activating state, suggesting a tighter and/or larger interaction interface with CheA and CheW in this state. These first measurements of the stability of protein subdomains within functional signaling complexes demonstrate the promise of this approach for measuring functionally important protein dynamics within the various physiologically relevant states of multiprotein complexes.

SUBMITTER: Koshy SS 

PROVIDER: S-EPMC4270382 | biostudies-literature | 2014 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hydrogen exchange differences between chemoreceptor signaling complexes localize to functionally important subdomains.

Koshy Seena S SS   Li Xuni X   Eyles Stephen J SJ   Weis Robert M RM   Thompson Lynmarie K LK  

Biochemistry 20141203 49


The goal of understanding mechanisms of transmembrane signaling, one of many key life processes mediated by membrane proteins, has motivated numerous studies of bacterial chemotaxis receptors. Ligand binding to the receptor causes a piston motion of an α helix in the periplasmic and transmembrane domains, but it is unclear how the signal is then propagated through the cytoplasmic domain to control the activity of the associated kinase CheA. Recent proposals suggest that signaling in the cytoplas  ...[more]

Similar Datasets

| S-EPMC6832072 | biostudies-literature
| S-EPMC3922707 | biostudies-literature
| S-EPMC2529006 | biostudies-literature
| S-EPMC2440508 | biostudies-literature
| S-EPMC3797187 | biostudies-literature
| S-EPMC3993920 | biostudies-literature
| S-EPMC5907500 | biostudies-literature
| S-EPMC2359816 | biostudies-other
| S-EPMC2757243 | biostudies-literature
| S-EPMC2593103 | biostudies-literature