Project description:Genomic analysis of H. salinarum indicated that the de novo pathway for aromatic amino acid (AroAA) biosynthesis does not follow the classical pathway but begins from non-classical precursors, as is the case for M. jannaschii. The first two steps in the pathway were predicted to be carried out by genes OE1472F and OE1475F, while the 3rd step follows the canonical pathway involving gene OE1477R. The functions of these genes and their products were tested by biochemical and genetic methods. In this study, we provide evidence that supports the role of proteins OE1472F and OE1475F catalyzing consecutive enzymatic reactions leading to the production of 3-dehydroquinate (DHQ), after which AroAA production proceeds via the canonical pathway starting with the formation of DHS (dehydroshikimate), catalyzed by the product of ORF OE1477R. Nutritional requirements and AroAA uptake studies of the mutants gave results that were consistent with the proposed roles of these ORFs in AroAA biosynthesis. DNA microarray data indicated that the 13 genes of the canonical pathway appear to be utilised for AroAA biosynthesis in H. salinarum, as they are differentially expressed when cells are grown in medium lacking AroAA.
Project description:Modified amino acids are useful synthetic components in both chemistry and biology. Here we describe a simple, scalable two-step procedure to generate α-thio aromatic acids from aromatic amino acids with yields of up to 96%. Diazotization and α-lactone mediated bromination efficiently form the α-bromo acid with retention of configuration. Thiol substitution with mild reagents such as sodium hydrosulfide or sodium trithiocarbonate provides the inverted, free α-thio acid. The mildly acidic soft nucleophile can then be utilized in many synthetic applications.
Project description:Pseudomonas putida is a highly solvent-resistant microorganism and useful chassis for the production of value-added compounds from lignocellulosic residues, in particular aromatic compounds that are made from phenylalanine. The use of these agricultural residues requires a two-step treatment to release the components of the polysaccharides of cellulose and hemicellulose as monomeric sugars, the most abundant monomers being glucose and xylose. Pan-genomic studies have shown that Pseudomonas putida metabolizes glucose through three convergent pathways to yield 6-phosphogluconate and subsequently metabolizes it through the Entner-Doudoroff pathway, but the strains do not degrade xylose. The valorization of both sugars is critical from the point of view of economic viability of the process. For this reason, a P. putida strain was endowed with the ability to metabolize xylose via the xylose isomerase pathway, by incorporating heterologous catabolic genes that convert this C5 sugar into intermediates of the pentose phosphate cycle. In addition, the open reading frame T1E_2822, encoding glucose dehydrogenase, was knocked-out to avoid the production of the dead-end product xylonate. We generated a set of DOT-T1E-derived strains that metabolized glucose and xylose simultaneously in culture medium and that reached high cell density with generation times of around 100 min with glucose and around 300 min with xylose. The strains grew in 2G hydrolysates from diluted acid and steam explosion pretreated corn stover and sugarcane straw. During growth, the strains metabolized > 98% of glucose, > 96% xylose and > 85% acetic acid. In 2G hydrolysates P. putida 5PL, a DOT-T1E derivative strain that carries up to five independent mutations to avoid phenylalanine metabolism, accumulated this amino acid in the medium. We constructed P. putida 5PLΔgcd (xylABE) that produced up to 250 mg l-1 of phenylalanine when grown in 2G pretreated corn stover or sugarcane straw. These results support as a proof of concept the potential of P. putida as a chassis for 2G processes.
Project description:We had shown that aromatic amino acid (phenylalanine, tyrosine, and tryptophan) supplementation prevented bone loss in an aging C57BL/6 mice model. In vivo results from the markers of bone breakdown suggested an inhibition of osteoclastic activity or differentiation. To assess osteoclastic differentiation, we examined the effects of aromatic amino acids on early /structural markers as vitronectin receptor, calcitonin receptor, and carbonic anhydrase II as well as, late/functional differentiation markers; cathepsin K and matrix metalloproteinase 9 (MMP-9). Our data demonstrate that the aromatic amino acids down-regulated early and late osteoclastic differentiation markers as measured by real time PCR. Our data also suggest a link between the vitronectin receptor and the secreted cathepsin K that both showed consistent effects to the aromatic amino acid treatment. However, the non-attachment related proteins, calcitonin receptor, and carbonic anhydrase II, demonstrated less consistent effects in response to treatment. Our data are consistent with aromatic amino acids down-regulating osteoclastic differentiation by suppressing remodeling gene expression thus contributing initially to the net increase in bone mass seen in vivo.
Project description:Continuing with our interest in the guanidinium group and the different interactions than can establish, we have carried out a theoretical study of the complexes formed by this cation and the aromatic amino acids (phenylalanine, histidine, tryptophan and tyrosine) using DFT methods and PCM-water solvation. Both hydrogen bonds and cation-π interactions have been found upon complexation. These interactions have been characterized by means of the analysis of the molecular electron density using the Atoms-in-Molecules approach as well as the orbital interactions using the Natural Bond Orbital methodology. Finally, the effect that the cation-π and hydrogen bond interactions exert on the aromaticity of the corresponding amino acids has been evaluated by calculating the theoretical NICS values, finding that the aromatic character was not heavily modified upon complexation.
Project description:Tyrosine depletion in metazoan proteins was recently explained to be due to the appearance of tyrosine kinases in Metazoa. Here, we present a complementary explanation for the depletion of tyrosine, stating the importance of tyrosine in signaling not only as a phosphorylation target but also as a precursor for catecholamines and hormones. Molecules (dopamine, norepinephrine, and epinephrine, and to a lesser extent serotonin and melatonin) critical to metazoan multicellular signaling are also greatly dependent on a supply of tyrosine. These signaling molecules are synthesized in two highly linked pathways specific to metazoans. In addition, the shikimate pathway that non-metazoans use to synthesize the aromatic amino acids is not present in metazoans. These important pathway changes have occurred between Metazoa and other eukaryotes, causing significant changes to tyrosine metabolism and rendering tyrosine crucial for extracellular signaling. In addition, the evolutionary and functional linkage between these two pathways and the resulting implications for neuropathology are discussed.
Project description:Microbial biosensors have diverse applications in metabolic engineering and medicine. Specific and accurate quantification of chemical concentrations allows for adaptive regulation of enzymatic pathways and temporally precise expression of diagnostic reporters. Although biosensors should differentiate structurally similar ligands with distinct biological functions, such specific sensors are rarely found in nature and challenging to create. Using E. coli Nissle 1917, a generally regarded as safe microbe, we characterized two biosensor systems that promiscuously recognize aromatic amino acids or neurochemicals. To improve the sensors' selectivity and sensitivity, we applied rational protein engineering by identifying and mutagenizing amino acid residues and successfully demonstrated the ligand-specific biosensors for phenylalanine, tyrosine, phenylethylamine, and tyramine. Additionally, our approach revealed insights into the uncharacterized structure of the FeaR regulator, including critical residues in ligand binding. These results lay the groundwork for developing kinetically adaptive microbes for diverse applications. A record of this paper's transparent peer review process is included in the supplemental information.
Project description:Dimethylallyl tryptophan synthases (DMATSs) are aromatic prenyltransferases that catalyze the transfer of a prenyl moiety from a donor to an aromatic acceptor during the biosynthesis of microbial secondary metabolites. Due to their broad substrate scope, DMATSs are anticipated as biotechnological tools for producing bioactive prenylated aromatic compounds. Our study explored the substrate scope and product profile of a recombinant RePT, a novel DMATS from the thermophilic fungus Rasamsonia emersonii. Among a variety of aromatic substrates, RePT showed the highest substrate conversion for L-tryptophan and L-tyrosine (> 90%), yielding two mono-prenylated products in both cases. Nine phenolics from diverse phenolic subclasses were notably converted (> 10%), of which the stilbenes oxyresveratrol, piceatannol, pinostilbene, and resveratrol were the best acceptors (37-55% conversion). The position of prenylation was determined using NMR spectroscopy or annotated using MS2 fragmentation patterns, demonstrating that RePT mainly catalyzed mono-O-prenylation on the hydroxylated aromatic substrates. On L-tryptophan, a non-hydroxylated substrate, it preferentially catalyzed C7 prenylation with reverse N1 prenylation as a secondary reaction. Moreover, RePT also possessed substrate-dependent organic solvent tolerance in the presence of 20% (v/v) methanol or DMSO, where a significant conversion (> 90%) was maintained. Our study demonstrates the potential of RePT as a biocatalyst for the production of bioactive prenylated aromatic amino acids, stilbenes, and various phenolic compounds. KEY POINTS: • RePT catalyzes prenylation of diverse aromatic substrates. • RePT enables O-prenylation of phenolics, especially stilbenes. • The novel RePT remains active in 20% methanol or DMSO.
Project description:Medium-adapted cultures of H. salinarum were grown in synthetic medium with or without AroAA, and cells harvested by centrifugation after growth had reached OD600nm=0.2 and 0.58, respectively.
Project description:Syntrophy is essential for the efficient conversion of organic carbon to methane in natural and constructed environments, but little is known about the enzymes involved in syntrophic carbon and electron flow. Syntrophus aciditrophicus strain SB syntrophically degrades benzoate and cyclohexane-1-carboxylate and catalyses the novel synthesis of benzoate and cyclohexane-1-carboxylate from crotonate. We used proteomic, biochemical and metabolomic approaches to determine what enzymes are used for fatty, aromatic and alicyclic acid degradation versus for benzoate and cyclohexane-1-carboxylate synthesis. Enzymes involved in the metabolism of cyclohex-1,5-diene carboxyl-CoA to acetyl-CoA were in high abundance in S. aciditrophicus cells grown in pure culture on crotonate and in coculture with Methanospirillum hungatei on crotonate, benzoate or cyclohexane-1-carboxylate. Incorporation of 13 C-atoms from 1-[13 C]-acetate into crotonate, benzoate and cyclohexane-1-carboxylate during growth on these different substrates showed that the pathways are reversible. A protein conduit for syntrophic reverse electron transfer from acyl-CoA intermediates to formate was detected. Ligases and membrane-bound pyrophosphatases make pyrophosphate needed for the synthesis of ATP by an acetyl-CoA synthetase. Syntrophus aciditrophicus, thus, uses a core set of enzymes that operates close to thermodynamic equilibrium to conserve energy in a novel and highly efficient manner.