Polarized sorting of the copper transporter ATP7B in neurons mediated by recognition of a dileucine signal by AP-1.
Ontology highlight
ABSTRACT: Neurons are highly polarized cells having distinct somatodendritic and axonal domains. Here we report that polarized sorting of the Cu(2+) transporter ATP7B and the vesicle-SNARE VAMP4 to the somatodendritic domain of rat hippocampal neurons is mediated by recognition of dileucine-based signals in the cytosolic domains of the proteins by the ?1 subunit of the clathrin adaptor AP-1. Under basal Cu(2+) conditions, ATP7B was localized to the trans-Golgi network (TGN) and the plasma membrane of the soma and dendrites but not the axon. Mutation of a dileucine-based signal in ATP7B or overexpression of a dominant-negative ?1 mutant resulted in nonpolarized distribution of ATP7B between the somatodendritic and axonal domains. Furthermore, addition of high Cu(2+) concentrations, previously shown to reduce ATP7B incorporation into AP-1-containing clathrin-coated vesicles, caused loss of TGN localization and somatodendritic polarity of ATP7B. These findings support the notion of AP-1 as an effector of polarized sorting in neurons and suggest that altered polarity of ATP7B in polarized cell types might contribute to abnormal copper metabolism in the MEDNIK syndrome, a neurocutaneous disorder caused by mutations in the ?1A subunit isoform of AP-1.
SUBMITTER: Jain S
PROVIDER: S-EPMC4294670 | biostudies-literature | 2015 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA