Unknown

Dataset Information

0

Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells.


ABSTRACT: AIMS/HYPOTHESIS:Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone with anti-apoptotic effects on the pancreatic beta cell. The aim of this study was to generate transgenic mice with fluorescently labelled GIP-secreting K cells and to use these to investigate pathways by which K cells detect nutrients. METHODS:Transgenic mice were generated in which the GIP promoter drives the expression of the yellow fluorescent protein Venus. Fluorescent cells were purified by flow cytometry and analysed by quantitative RT-PCR. GIP secretion was assayed in primary cultures of small intestine. RESULTS:Expression of Venus in transgenic mice was restricted to K cells, as assessed by immunofluorescence and measurements of the Gip mRNA and GIP protein contents of purified cells. K cells expressed high levels of mRNA for Kir6.2 (also known as Kcnj11), Sur1 (also known as Abcc8), Sglt1 (also known as Slc5a1), and of the G-protein-coupled lipid receptors Gpr40 (also known as Ffar1), Gpr119 and Gpr120. In primary cultures, GIP release was stimulated by glucose, glutamine and linoleic acid, and potentiated by forskolin plus 3-isobutyl-1-methylxanthine (IBMX), but was unaffected by the artificial sweetener sucralose. Secretion was half-maximal at 0.6 mmol/l glucose and partially mimicked by alpha-methylglucopyranoside, suggesting the involvement of SGLT1. Tolbutamide triggered secretion under basal conditions, whereas diazoxide suppressed responses in forskolin/IBMX. CONCLUSIONS/INTERPRETATION:These transgenic mice and primary culture techniques provide novel opportunities to interrogate the mechanisms of GIP secretion. Glucose-triggered GIP secretion was SGLT1-dependent and modulated by K(ATP) channel activity but not determined by sweet taste receptors. Synergistic stimulation by elevated cAMP and glucose suggests that targeting appropriate G-protein-coupled receptors may provide opportunities to modulate GIP release in vivo.

SUBMITTER: Parker HE 

PROVIDER: S-EPMC4308617 | biostudies-literature | 2009 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells.

Parker H E HE   Habib A M AM   Rogers G J GJ   Gribble F M FM   Reimann F F  

Diabetologia 20081211 2


<h4>Aims/hypothesis</h4>Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone with anti-apoptotic effects on the pancreatic beta cell. The aim of this study was to generate transgenic mice with fluorescently labelled GIP-secreting K cells and to use these to investigate pathways by which K cells detect nutrients.<h4>Methods</h4>Transgenic mice were generated in which the GIP promoter drives the expression of the yellow fluorescent protein Venus. Fluorescent cells were purifie  ...[more]

Similar Datasets

| S-EPMC4854499 | biostudies-literature
| S-EPMC3219957 | biostudies-literature
| S-EPMC4854500 | biostudies-other
| S-EPMC2803629 | biostudies-literature
| S-EPMC6838660 | biostudies-literature
| S-EPMC4854501 | biostudies-other
| S-EPMC4854498 | biostudies-literature
| S-EPMC4931199 | biostudies-literature
| S-EPMC3464380 | biostudies-literature
2019-07-24 | GSE134726 | GEO