Unknown

Dataset Information

0

Highlighting nonlinear patterns in population genetics datasets.


ABSTRACT: Detecting structure in population genetics and case-control studies is important, as it exposes phenomena such as ecoclines, admixture and stratification. Principal Component Analysis (PCA) is a linear dimension-reduction technique commonly used for this purpose, but it struggles to reveal complex, nonlinear data patterns. In this paper we introduce non-centred Minimum Curvilinear Embedding (ncMCE), a nonlinear method to overcome this problem. Our analyses show that ncMCE can separate individuals into ethnic groups in cases in which PCA fails to reveal any clear structure. This increased discrimination power arises from ncMCE's ability to better capture the phylogenetic signal in the samples, whereas PCA better reflects their geographic relation. We also demonstrate how ncMCE can discover interesting patterns, even when the data has been poorly pre-processed. The juxtaposition of PCA and ncMCE visualisations provides a new standard of analysis with utility for discovering and validating significant linear/nonlinear complementary patterns in genetic data.

SUBMITTER: Alanis-Lobato G 

PROVIDER: S-EPMC4311249 | biostudies-literature | 2015 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Highlighting nonlinear patterns in population genetics datasets.

Alanis-Lobato Gregorio G   Cannistraci Carlo Vittorio CV   Eriksson Anders A   Manica Andrea A   Ravasi Timothy T  

Scientific reports 20150130


Detecting structure in population genetics and case-control studies is important, as it exposes phenomena such as ecoclines, admixture and stratification. Principal Component Analysis (PCA) is a linear dimension-reduction technique commonly used for this purpose, but it struggles to reveal complex, nonlinear data patterns. In this paper we introduce non-centred Minimum Curvilinear Embedding (ncMCE), a nonlinear method to overcome this problem. Our analyses show that ncMCE can separate individual  ...[more]

Similar Datasets

| S-EPMC9410889 | biostudies-literature
| PRJEB24914 | ENA
| PRJEB29130 | ENA
| S-EPMC10205447 | biostudies-literature
| S-EPMC3385003 | biostudies-literature
| S-EPMC6881151 | biostudies-literature
| S-EPMC4921837 | biostudies-literature
| PRJEB2060 | ENA
| PRJEB52783 | ENA
| S-EPMC6412057 | biostudies-literature