Project description:Background & objectivesThere are reports about the susceptibility of Aedes mosquitoes to ZIKV from various countries, however, no such information is available from Indian sub-continent, although, high level of group cross-reactivity of ZIKV with other flaviviruses has been reported. During outbreak situations, many cases of Dengue (DEN) and Chikungunya (CHIK) are reported. In such scenario, vector mosquitoes are likely to get co-infection/secondary-infection with one or other virus. The present study was carried out to determine the susceptibility of Indian strain of Aedes aegypti to Zika virus (ZIKV) strain (MR-766) and the effect of co-infection/super-infection with either dengue virus (serotype-2) (DENV) or chikungunya virus (CHIKV) on ZIKV replication.MethodsAe. aegypti mosquitoes used in this study were reared for many generations since 1980 at laboratory colony maintained at the ICMR-National Institute of Virology, Pune, India. Transmissibility of ZIKV from infected mosquitoes to suckling mice was also studied. Mosquitoes were experimentally infected with ZIKV and super-infected with either DENV or CHIKV via membrane-feeding route and incubated for 14 days at 28±2°C and humidity of 85±5 per cent. Replication of these viruses in mosquitoes was confirmed using real-time reverse transcription-polymerase chain reaction and immunofluorescence assay. Twenty infected mosquitoes were allowed to feed upon four suckling CD1 mice for about 30 min. Transmission of the ZIKV by infected mosquitoes to suckling mice was confirmed by the appearance of clinical signs and the presence of viral RNA in different organs.ResultsConcomitant infection of mosquitoes with all the three viruses showed simultaneous propagation of all three viruses, confirmed by real time RT-PCR and IFA. Infection of mosquitoes with CHIKV followed by ZIKV showed positivity in individual head squashes (7%) for both viruses using IFA; only 8.3 per cent showed dual positivity with primary infection of ZIKV followed by DENV; 8.3 per cent dual infection positivity was observed when infected with DENV followed by ZIKV; 5 per cent showed dual infection was observed when infected with ZIKV followed by CHIKV. Ae. aegypti was found to be susceptible to ZIKV strain as ZIKV could be detected from the second post-infection day (PID) in infected mosquitoes. Transmission of ZIKV to mice by the bite of infected Ae. aegypti establishes this species as a potential vector.Interpretation & conclusionsFrom super-infection experiments, it was concluded that ZIKV might have a relative advantage in replication dynamics over DENV. Vertical transmission was not observed for ZIKV in experimentally infected mosquitoes (n=920 larvae). Further studies are required to understand the possibility of silently circulating ZIKV in India, which remain non-detected because of lack of surveillance.
Project description:BackgroundIn Colombia, the dengue virus (DENV) has been endemic for decades, and with the recent entry of the chikungunya virus (CHIKV) (2014) and the Zika virus (ZIKV) (2015), health systems are overloaded because the diagnosis of these three diseases is based on clinical symptoms, and the three diseases share a symptomatology of febrile syndrome. Thus, the objective of this study was to use molecular methods to identify their co-circulation as well as the prevalence of co-infections, in a cohort of patients at the Colombian-Venezuelan border.MethodsA total of 157 serum samples from patients with febrile syndrome consistent with DENV were collected after informed consent and processed for the identification of DENV (conventional PCR and real-time PCR), CHIKV (conventional PCR), and ZIKV (real-time PCR). DENV-positive samples were serotyped, and some of those positive for DENV and CHIKV were sequenced.ResultsEighty-two patients were positive for one or more viruses: 33 (21.02%) for DENV, 47 (29.94%) for CHIKV, and 29 (18.47%) for ZIKV. The mean age range of the infected population was statistically higher in the patients infected with ZIKV (29.72 years) than in those infected with DENV or CHIKV (21.09 years). Both co-circulation and co-infection of these three viruses was found. The prevalence of DENV/CHIKV, DENV/ZIKV, and CHIKV/ZIKV co-infection was 7.64%, 6.37%, and 5.10%, with attack rates of 14.90, 12.42, and 9.93 cases per 100,000 inhabitants, respectively. Furthermore, three patients were found to be co-infected with all three viruses (prevalence of 1.91%), with an attack rate of 4.96 cases per 100,000 inhabitants.ConclusionOur results demonstrate the simultaneous co-circulation of DENV, CHIKV, ZIKV and their co-infections at the Colombian-Venezuelan border. Moreover, it is necessary to improve the differential diagnosis in patients with acute febrile syndrome and to study the possible consequences of this epidemiological overview of the clinical outcomes of these diseases in endemic regions.
Project description:Dengue and Zika are closely related members of the Flaviviridae family of positive, single-stranded RNA viruses and are of global clinical importance. These viruses utilize an 11kb RNA genome for translation and replication, and much remains to be learnt about how the entire genome folds to enable virus function. Here, we performed high throughput RNA secondary structure and pair-wise interaction mapping on four dengue serotypes and four Zika strains within their virus particles. We identified structures that are associated with translation pausing, and are evolutionary conserved by integrating synonymous mutation rates into our analysis. Genome-wide interaction mapping revealed alternative structures, as well as extensive long-range RNA interactions – including the known circularization signals– within the virus particles. Many of these long-range interactions are conserved across the viruses and/or clustered into “hubs” that are shown to be functionally important. This comprehensive structural resource of dengue and Zika viruses reveals that viral genome organization is much more complex than previously appreciated and deepens our understanding of the molecular basis for viral pathogenesis.
Project description:Since its detection in 2015 in Brazil, Zika virus (ZIKV) has remained in the spotlight of international public health and research as an emerging arboviral pathogen. In addition to single infection, ZIKV may occur in co-infection with dengue (DENV) and chikungunya (CHIKV) viruses, with whom ZIKV shares geographic distribution and the mosquito Aedes aegypti as a vector. The main mosquito immune response against arboviruses is RNA interference (RNAi). It is unknown whether or not the dynamics of the RNAi response differ between single arboviral infections and co-infections. In this study, we investigated the interaction of ZIKV and DENV, as well as ZIKV and CHIKV co-infections with the RNAi response in Ae. aegypti. Using small RNA sequencing, we found that the efficiency of small RNA production against ZIKV -a hallmark of antiviral RNAi-was mostly similar when comparing single and co-infections with either DENV or CHIKV. Silencing of key antiviral RNAi proteins, showed no change in effect on ZIKV replication when the cell is co-infected with ZIKV and DENV or CHIKV. Interestingly, we observed a negative effect on ZIKV replication during CHIKV co-infection in the context of Ago2-knockout cells, though his effect was absent during DENV co-infection. Overall, this study provides evidence that ZIKV single or co-infections with CHIKV or DENV are equally controlled by RNAi responses. Thus, Ae. aegypti mosquitoes and derived cells support co-infections of ZIKV with either CHIKV or DENV to a similar level than single infections, as long as the RNAi response is functional.
Project description:The underlying mechanisms by which prior immunity to dengue virus (DENV) affords cross-protection against the related flavivirus Zika virus (ZIKV) are poorly understood. Here, we examine the ability of DENV/ZIKV-cross-reactive CD4+ T cells to protect against versus exacerbate ZIKV infection by using a histocompatibility leukocyte antigen (HLA)-DRB1∗0101 transgenic, interferon α/β receptor-deficient mouse model that supports robust DENV and ZIKV replication. By mapping the HLA-DRB1∗0101-restricted T cell response, we identify DENV/ZIKV-cross-reactive CD4+ T cell epitopes that stimulate interferon gamma (IFNγ) and/or tumor necrosis factor (TNF) production. Vaccination of naive HLA-DRB1∗0101 transgenic mice with these peptides induces a CD4+ T cell response sufficient to reduce tissue viral burden following ZIKV infection. Notably, this protective response requires IFNγ and/or TNF secretion but not anti-ZIKV immunoglobulin G (IgG) production. Thus, DENV/ZIKV-cross-reactive CD4+ T cells producing canonical Th1 cytokines can suppress ZIKV replication in an antibody-independent manner. These results may have important implications for increasing the efficacy and safety of DENV/ZIKV vaccines and for developing pan-flavivirus vaccines.
Project description:The mosquito-borne viruses dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV), now co-endemic in the Americas, pose growing threats to health worldwide. However, it remains unclear whether there exist interactions between these viruses that could shape their epidemiology. This study advances knowledge by assessing the transmission dynamics of co-circulating DENV, ZIKV, and CHIKV in the city of Fortaleza, Brazil. Spatiotemporal transmission dynamics of DENV, ZIKV, and CHIKV were analyzed using georeferenced data on over 210,000 reported cases from 2011 to 2017 in Fortaleza, Brazil. Local spatial clustering tests and space-time scan statistics were used to compare transmission dynamics across all years. The transmission of co-circulating viruses in 2016 and 2017 was evaluated at fine spatial and temporal scales using a measure of spatiotemporal dependence, the ?-statistic. Results revealed differences in the diffusion of CHIKV compared to previous DENV epidemics and spatially distinct transmission of DENV/ZIKV and CHIKV during the period of their co-circulation. Significant spatial clustering of viruses of the same type was observed within 14-day time intervals at distances of up to 6.8 km (p<0.05). These results suggest that arbovirus risk is not uniformly distributed within cities during co-circulation. Findings may guide outbreak preparedness and response efforts by highlighting the clustered nature of transmission of co-circulating arboviruses at the neighborhood level. The potential for competitive interactions between the arboviruses should be further investigated.
Project description:New Caledonia and French Polynesia are areas in which arboviruses circulate extensively. A large serological survey among horses from New Caledonia and French Polynesia was carried out to investigate the seroprevalence of flaviviruses in the horse population. Here, 293 equine sera samples were screened for flaviviruses using a competitive enzyme-linked immunosorbent assay (cELISA). The positive sera were then confirmed using a flavivirus-specific microsphere immunoassay (MIA) and seroneutralization tests. This serosurvey showed that 16.6% (27/163) and 30.8% (40/130) of horses were positive for cELISA tests in New Caledonia and French Polynesia, respectively, but the MIA technique, targeting only flaviviruses causing neuro-invasive infections in humans and horses (i.e. West Nile virus [WNV], Japanese encephalitis virus [JEV] and tick-borne encephalitis virus [TBEV]), showed negative results for more than 85% (57/67) of the cELISA-positive animals. Seroneutralization tests with the main flaviviruses circulating in the South Pacific revealed that 6.1% (10/163; confidence interval [95% CI] 3.0%-11.0%) of sera in New Caledonia and 7.7% (10/130; 95% CI 3.8%-13.7%) in French Polynesia were positive for dengue virus serotype 1 (DENV1) and 4.3% (7/163; 95% CI 1.7%-8.6%) in New Caledonia and 15.4% (20/130, 95% CI 9.7%-22.8%) in French Polynesia were found positive for Zika virus (ZIKV). Seroprevalence of the JEV and WNV flaviviruses on the 293 samples from both island groups were comparatively much lower (less than 2%). This seroprevalence study in the horse population shows that horses can be infected with dengue and Zika viruses and that these infections lead to seroconversions in horses. The consequences of these infections in horses and their role in ZIKV and DENV epidemiological cycles are two issues that deserve further investigation.
Project description:Zika virus (ZIKV) emerged in Brazil during 2013-2014 causing an epidemic of previously unknown congenital abnormalities. The frequency of severe congenital abnormalities after maternal ZIKV infection revealed an unexplained geographic variability, especially between the Northeast and the rest of Brazil. Several reasons for this variability have been discussed. Prior immunity against Dengue virus (DENV) affecting ZIKV seems to be the most likely explanation. Here we summarise the current evidence regarding this prominent co-factor to potentially explain the geographic variability. This systematic review followed the PRISMA guidelines. The search was conducted up to May 15th, 2020, focussing on immunological interactions from Zika virus with previous Dengue virus infections as potential teratogenic effect for the foetus. Eight out of 339 screened studies reported on the association between ZIKV, prior DENV infection and microcephaly, mostly focusing on antibody-dependent enhancement (ADE) as potential pathomechanism. Prior DENV infection was associated with enhancement for ZIKV infection and increased neurovirulence in one included in vitro study only. Interestingly, the seven in vivo studies exhibited a heterogeneous picture with three studies showing a protective effect of prior DENV infections and others no effect at all. According to several studies, socio-economic factors are associated with increased risk for microcephaly. Very few studies addressed the question of unexplained variability of infection-related microcephaly. Many studies focussed on ADE as mechanism without measuring microcephaly as endpoint. Interestingly, three of the included studies reported a protective effect of prior DENV infection against microcephaly. This systematic review strengthens the hypothesis that immune priming after recent DENV infection is the crucial factor for determining protection or enhancement activity. It is of high importance that the currently ongoing prospective studies include a harmonised assessment of the potential candidate co-factors.
Project description:IntroductionZika virus (ZIKV) and dengue virus (DENV) co-circulated during latest outbreaks in Brazil, hence, it is important to evaluate the host cross-reactive immune responses to these viruses. So far, little is known about human T cell responses to ZIKV and no reports detail adaptive immune responses during DENV/ZIKV coinfection.MethodsHere, we studied T cells responses in well-characterized groups of DENV, ZIKV, or DENV/ZIKV infected patients and DENV-exposed healthy donors. We evaluated chemokine receptors expression and single/multifunctional frequencies of IFN?, TNF, and IL2-producing T cells during these infections. Even without antigenic stimulation, it was possible to detect chemokine receptors and IFN?, TNF, and IL2-producing T cells from all individuals by flow cytometry. Additionally, PBMCs' IFN? response to DENV NS1 protein and to polyclonal stimuli was evaluated by ELISPOT.ResultsDENV and ZIKV infections and DENV/ZIKV coinfections similarly induced expression of CCR5, CX3CR1, and CXCR3 on CD4 and CD8 T cells. DENV/ZIKV coinfection decreased the ability of CD4+ T cells to produce IFN?+ , TNF+ , TNF?+? IFN?+ , and TNF?+ ?IL2+ , compared to DENV and ZIKV infections. A higher magnitude of IFN? response to DENV NS1 was found in donors with a history of dengue infection, however, a hyporesponsiveness was found in acute DENV, ZIKV, or DENV/ZIKV infected patients, even previously infected with DENV.ConclusionTherefore, we emphasize the potential impact of coinfection on the immune response from human hosts, mainly in areas where DENV and ZIKV cocirculate.