Unknown

Dataset Information

0

Intron evolution in Neurospora: the role of mutational bias and selection.


ABSTRACT: We used comparative and population genomics to study intron evolutionary dynamics in the fungal model genus Neurospora. For our investigation, we used well-annotated genomes of N. crassa, N. discreta, and N. tetrasperma, and 92 resequenced genomes of N. tetrasperma from natural populations. By analyzing the four well-annotated genomes, we identified 9495 intron sites in 7619 orthologous genes. Our data supports nonhomologous end joining (NHEJ) and tandem duplication as mechanisms for intron gains in the genus and the RT-mRNA process as a mechanism for intron loss. We found a moderate intron gain rate (5.78-6.89 × 10(-13) intron gains per nucleotide site per year) and a high intron loss rate (7.53-13.76 × 10(-10) intron losses per intron sites per year) as compared to other eukaryotes. The derived intron gains and losses are skewed to high frequencies, relative to neutral SNPs, in natural populations of N. tetrasperma, suggesting that selection is involved in maintaining a high intron turnover. Furthermore, our analyses of the association between intron population-level frequency and genomic features suggest that selection is involved in shaping a 5' intron position bias and a low intron GC content. However, intron sequence analyses suggest that the gained introns were not exposed to recent selective sweeps. Taken together, this work contributes to our understanding of the importance of mutational bias and selection in shaping the intron distribution in eukaryotic genomes.

SUBMITTER: Sun Y 

PROVIDER: S-EPMC4317165 | biostudies-literature | 2015 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Intron evolution in Neurospora: the role of mutational bias and selection.

Sun Yu Y   Whittle Carrie A CA   Corcoran Pádraic P   Johannesson Hanna H  

Genome research 20141023 1


We used comparative and population genomics to study intron evolutionary dynamics in the fungal model genus Neurospora. For our investigation, we used well-annotated genomes of N. crassa, N. discreta, and N. tetrasperma, and 92 resequenced genomes of N. tetrasperma from natural populations. By analyzing the four well-annotated genomes, we identified 9495 intron sites in 7619 orthologous genes. Our data supports nonhomologous end joining (NHEJ) and tandem duplication as mechanisms for intron gain  ...[more]

Similar Datasets

| S-EPMC3730922 | biostudies-literature
| S-EPMC8283416 | biostudies-literature
| S-EPMC2878862 | biostudies-literature
| S-EPMC6369964 | biostudies-literature
| S-EPMC7275064 | biostudies-literature
| S-EPMC3622295 | biostudies-literature
| S-EPMC6367967 | biostudies-literature
| S-EPMC9326662 | biostudies-literature
| S-EPMC3483185 | biostudies-literature
2014-09-15 | GSE58884 | GEO