Unknown

Dataset Information

0

Conservation analysis of the CydX protein yields insights into small protein identification and evolution.


ABSTRACT: The reliable identification of proteins containing 50 or fewer amino acids is difficult due to the limited information content in short sequences. The 37 amino acid CydX protein in Escherichia coli is a member of the cytochrome bd oxidase complex, an enzyme found throughout Eubacteria. To investigate the extent of CydX conservation and prevalence and evaluate different methods of small protein homologue identification, we surveyed 1095 Eubacteria species for the presence of the small protein.Over 300 homologues were identified, including 80 unannotated genes. The ability of both closely-related and divergent homologues to complement the E. coli ?cydX mutant supports our identification techniques, and suggests that CydX homologues retain similar function among divergent species. However, sequence analysis of these proteins shows a great degree of variability, with only a few highly-conserved residues. An analysis of the co-variation between CydX homologues and their corresponding cydA and cydB genes shows a close synteny of the small protein with the CydA long Q-loop. Phylogenetic analysis suggests that the cydABX operon has undergone horizontal gene transfer, although the cydX gene likely evolved in a progenitor of the Alpha, Beta, and Gammaproteobacteria. Further investigation of cydAB operons identified two additional conserved hypothetical small proteins: CydY encoded in CydAQlong operons that lack cydX, and CydZ encoded in more than 150 CydAQshort operons.This study provides a systematic analysis of bioinformatics techniques required for the unique challenges present in small protein identification and phylogenetic analyses. These results elucidate the prevalence of CydX throughout the Proteobacteria, provide insight into the selection pressure and sequence requirements for CydX function, and suggest a potential functional interaction between the small protein and the CydA Q-loop, an enigmatic domain of the cytochrome bd oxidase complex. Finally, these results identify other conserved small proteins encoded in cytochrome bd oxidase operons, suggesting that small protein subunits may be a more common component of these enzymes than previously thought.

SUBMITTER: Allen RJ 

PROVIDER: S-EPMC4325964 | biostudies-literature | 2014 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Conservation analysis of the CydX protein yields insights into small protein identification and evolution.

Allen Rondine J RJ   Brenner Evan P EP   VanOrsdel Caitlin E CE   Hobson Jessica J JJ   Hearn David J DJ   Hemm Matthew R MR  

BMC genomics 20141205


<h4>Background</h4>The reliable identification of proteins containing 50 or fewer amino acids is difficult due to the limited information content in short sequences. The 37 amino acid CydX protein in Escherichia coli is a member of the cytochrome bd oxidase complex, an enzyme found throughout Eubacteria. To investigate the extent of CydX conservation and prevalence and evaluate different methods of small protein homologue identification, we surveyed 1095 Eubacteria species for the presence of th  ...[more]

Similar Datasets

| S-EPMC4772807 | biostudies-literature
| S-EPMC5819389 | biostudies-literature
| S-EPMC2930297 | biostudies-literature
| S-EPMC30594 | biostudies-literature
| S-EPMC2639358 | biostudies-literature
| S-EPMC3314655 | biostudies-literature
| S-EPMC5872270 | biostudies-literature
| S-EPMC10333126 | biostudies-literature
| S-EPMC9304859 | biostudies-literature
| S-EPMC5919020 | biostudies-literature