Ontology highlight
ABSTRACT:
SUBMITTER: Krallinger M
PROVIDER: S-EPMC4331692 | biostudies-literature | 2015
REPOSITORIES: biostudies-literature
Krallinger Martin M Rabal Obdulia O Leitner Florian F Vazquez Miguel M Salgado David D Lu Zhiyong Z Leaman Robert R Lu Yanan Y Ji Donghong D Lowe Daniel M DM Sayle Roger A RA Batista-Navarro Riza Theresa RT Rak Rafal R Huber Torsten T Rocktäschel Tim T Matos Sérgio S Campos David D Tang Buzhou B Xu Hua H Munkhdalai Tsendsuren T Ryu Keun Ho KH Ramanan S V SV Nathan Senthil S Žitnik Slavko S Bajec Marko M Weber Lutz L Irmer Matthias M Akhondi Saber A SA Kors Jan A JA Xu Shuo S An Xin X Sikdar Utpal Kumar UK Ekbal Asif A Yoshioka Masaharu M Dieb Thaer M TM Choi Miji M Verspoor Karin K Khabsa Madian M Giles C Lee CL Liu Hongfang H Ravikumar Komandur Elayavilli KE Lamurias Andre A Couto Francisco M FM Dai Hong-Jie HJ Tsai Richard Tzong-Han RT Ata Caglar C Can Tolga T Usié Anabel A Alves Rui R Segura-Bedmar Isabel I Martínez Paloma P Oyarzabal Julen J Valencia Alfonso A
Journal of cheminformatics 20150119 Suppl 1 Text mining for chemistry and the CHEMDNER trac
The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a tota ...[more]