Unknown

Dataset Information

0

Transcriptional inhibition and mutagenesis induced by N-nitroso compound-derived carboxymethylated thymidine adducts in DNA.


ABSTRACT: N-nitroso compounds represent a common type of environmental and endogenous DNA-damaging agents. After metabolic activation, many N-nitroso compounds are converted into a diazoacetate intermediate that can react with nucleobases to give carboxymethylated DNA adducts such as N3-carboxymethylthymidine (N3-CMdT) and O(4)-carboxymethylthymidine (O(4)-CMdT). In this study, we constructed non-replicative plasmids carrying a single N3-CMdT or O(4)-CMdT, site-specifically positioned in the transcribed strand, to investigate how these lesions compromise the flow of genetic information during transcription. Our results revealed that both N3-CMdT and O(4)-CMdT substantially inhibited DNA transcription mediated by T7 RNA polymerase or human RNA polymerase II in vitro and in human cells. In addition, we found that N3-CMdT and O(4)-CMdT were miscoding lesions and predominantly directed the misinsertion of uridine and guanosine, respectively. Our results also suggested that these carboxymethylated thymidine lesions may constitute efficient substrates for transcription-coupled nucleotide excision repair in human cells. These findings provided important new insights into the biological consequences of the carboxymethylated DNA lesions in living cells.

SUBMITTER: You C 

PROVIDER: S-EPMC4333421 | biostudies-literature | 2015 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Transcriptional inhibition and mutagenesis induced by N-nitroso compound-derived carboxymethylated thymidine adducts in DNA.

You Changjun C   Wang Jianshuang J   Dai Xiaoxia X   Wang Yinsheng Y  

Nucleic acids research 20150108 2


N-nitroso compounds represent a common type of environmental and endogenous DNA-damaging agents. After metabolic activation, many N-nitroso compounds are converted into a diazoacetate intermediate that can react with nucleobases to give carboxymethylated DNA adducts such as N3-carboxymethylthymidine (N3-CMdT) and O(4)-carboxymethylthymidine (O(4)-CMdT). In this study, we constructed non-replicative plasmids carrying a single N3-CMdT or O(4)-CMdT, site-specifically positioned in the transcribed s  ...[more]

Similar Datasets

| S-EPMC5038138 | biostudies-literature
| S-EPMC4020053 | biostudies-literature
| S-EPMC4051827 | biostudies-literature
| S-EPMC5499590 | biostudies-literature
| S-EPMC4641734 | biostudies-literature
| S-EPMC1630709 | biostudies-literature
| S-EPMC6855279 | biostudies-literature
2010-04-29 | GSE20993 | GEO
| S-EPMC3164846 | biostudies-literature
| S-EPMC2840506 | biostudies-literature