Unknown

Dataset Information

0

Intracellular ?-ketoglutarate maintains the pluripotency of embryonic stem cells.


ABSTRACT: The role of cellular metabolism in regulating cell proliferation and differentiation remains poorly understood. For example, most mammalian cells cannot proliferate without exogenous glutamine supplementation even though glutamine is a non-essential amino acid. Here we show that mouse embryonic stem (ES) cells grown under conditions that maintain naive pluripotency are capable of proliferation in the absence of exogenous glutamine. Despite this, ES cells consume high levels of exogenous glutamine when the metabolite is available. In comparison to more differentiated cells, naive ES cells utilize both glucose and glutamine catabolism to maintain a high level of intracellular ?-ketoglutarate (?KG). Consequently, naive ES cells exhibit an elevated ?KG to succinate ratio that promotes histone/DNA demethylation and maintains pluripotency. Direct manipulation of the intracellular ?KG/succinate ratio is sufficient to regulate multiple chromatin modifications, including H3K27me3 and ten-eleven translocation (Tet)-dependent DNA demethylation, which contribute to the regulation of pluripotency-associated gene expression. In vitro, supplementation with cell-permeable ?KG directly supports ES-cell self-renewal while cell-permeable succinate promotes differentiation. This work reveals that intracellular ?KG/succinate levels can contribute to the maintenance of cellular identity and have a mechanistic role in the transcriptional and epigenetic state of stem cells.

SUBMITTER: Carey BW 

PROVIDER: S-EPMC4336218 | biostudies-literature | 2015 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells.

Carey Bryce W BW   Finley Lydia W S LW   Cross Justin R JR   Allis C David CD   Thompson Craig B CB  

Nature 20141210 7539


The role of cellular metabolism in regulating cell proliferation and differentiation remains poorly understood. For example, most mammalian cells cannot proliferate without exogenous glutamine supplementation even though glutamine is a non-essential amino acid. Here we show that mouse embryonic stem (ES) cells grown under conditions that maintain naive pluripotency are capable of proliferation in the absence of exogenous glutamine. Despite this, ES cells consume high levels of exogenous glutamin  ...[more]

Similar Datasets

| S-EPMC2830094 | biostudies-literature
| S-EPMC2916696 | biostudies-literature
| S-EPMC4654943 | biostudies-literature
| S-EPMC3373402 | biostudies-literature
| S-EPMC3795787 | biostudies-literature
| S-EPMC3947311 | biostudies-literature
| S-EPMC6662269 | biostudies-literature
| S-EPMC3750137 | biostudies-literature
| S-EPMC4765890 | biostudies-literature
| S-EPMC1838514 | biostudies-literature