Unknown

Dataset Information

0

Interaction of micron and nano-sized particles with cells of the dura mater.


ABSTRACT: Intervertebral total disc replacements (TDR) are used in the treatment of degenerative spinal disc disease. There are, however, concerns that they may be subject to long-term failure due to wear. The adverse effects of TDR wear have the potential to manifest in the dura mater and surrounding tissues. The aim of this study was to investigate the physiological structure of the dura mater, isolate the resident dural epithelial and stromal cells and analyse the capacity of these cells to internalise model polymer particles. The porcine dura mater was a collagen-rich structure encompassing regularly arranged fibroblastic cells within an outermost epithelial cell layer. The isolated dural epithelial cells had endothelial cell characteristics (positive for von Willebrand factor, CD31, E-cadherin and desmoplakin) and barrier functionality whereas the fibroblastic cells were positive for collagen I and III, tenascin and actin. The capacity of the dural cells to take up model particles was dependent on particle size. Nanometer sized particles readily penetrated both types of cells. However, dural fibroblasts engulfed micron-sized particles at a much higher rate than dural epithelial cells. The study suggested that dural epithelial cells may offer some barrier to the penetration of micron-sized particles but not nanometer sized particles.

SUBMITTER: Papageorgiou I 

PROVIDER: S-EPMC4336564 | biostudies-literature | 2014 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Interaction of micron and nano-sized particles with cells of the dura mater.

Papageorgiou Iraklis I   Marsh Rainy R   Tipper Joanne L JL   Hall Richard M RM   Fisher John J   Ingham Eileen E  

Journal of biomedical materials research. Part B, Applied biomaterials 20140306 7


Intervertebral total disc replacements (TDR) are used in the treatment of degenerative spinal disc disease. There are, however, concerns that they may be subject to long-term failure due to wear. The adverse effects of TDR wear have the potential to manifest in the dura mater and surrounding tissues. The aim of this study was to investigate the physiological structure of the dura mater, isolate the resident dural epithelial and stromal cells and analyse the capacity of these cells to internalise  ...[more]

Similar Datasets

| S-EPMC5452773 | biostudies-other
| S-EPMC4434214 | biostudies-literature
| S-EPMC4992151 | biostudies-literature
| S-EPMC3010590 | biostudies-literature
| S-EPMC3078152 | biostudies-other
| S-EPMC3581832 | biostudies-other
| S-EPMC3895779 | biostudies-literature
| S-EPMC8654829 | biostudies-literature
| S-EPMC9338665 | biostudies-literature
| S-EPMC4353733 | biostudies-literature