Unknown

Dataset Information

0

Charge-driven dynamics of nascent-chain movement through the SecYEG translocon.


ABSTRACT: On average, every fifth residue in secretory proteins carries either a positive or a negative charge. In a bacterium such as Escherichia coli, charged residues are exposed to an electric field as they transit through the inner membrane, and this should generate a fluctuating electric force on a translocating nascent chain. Here, we have used translational arrest peptides as in vivo force sensors to measure this electric force during cotranslational chain translocation through the SecYEG translocon. We find that charged residues experience a biphasic electric force as they move across the membrane, including an early component with a maximum when they are 47-49 residues away from the ribosomal P site, followed by a more slowly varying component. The early component is generated by the transmembrane electric potential, whereas the second may reflect interactions between charged residues and the periplasmic membrane surface.

SUBMITTER: Ismail N 

PROVIDER: S-EPMC4338579 | biostudies-literature | 2015 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Charge-driven dynamics of nascent-chain movement through the SecYEG translocon.

Ismail Nurzian N   Hedman Rickard R   Lindén Martin M   von Heijne Gunnar G  

Nature structural & molecular biology 20150105 2


On average, every fifth residue in secretory proteins carries either a positive or a negative charge. In a bacterium such as Escherichia coli, charged residues are exposed to an electric field as they transit through the inner membrane, and this should generate a fluctuating electric force on a translocating nascent chain. Here, we have used translational arrest peptides as in vivo force sensors to measure this electric force during cotranslational chain translocation through the SecYEG transloc  ...[more]

Similar Datasets

| S-EPMC6028853 | biostudies-literature
| S-EPMC8082313 | biostudies-literature
| S-EPMC3100187 | biostudies-literature
| S-EPMC6776908 | biostudies-literature
| S-SCDT-EMBOR-2019-48191V1 | biostudies-other
| S-EPMC2475691 | biostudies-literature
| S-EPMC3318685 | biostudies-literature
| S-EPMC2572860 | biostudies-literature