Project description:ObjectiveLipoprotein-associated phospholipase A2 (Lp-PLA2) is deemed to play a role in atherosclerosis and plaque destabilization as demonstrated in animal models and in prospective clinical studies. However, most of the literature is either focused on high-risk, apparently healthy patients, or is based on cross sectional studies. Therefore, we tested the hypothesis that serum Lp-PLA2 mass and activity are useful for predicting cardiovascular (CV) events over the coronary atherosclerotic burden and conventional risk factors in high-risk coronary artery disease patients.Methods and resultsIn a prospective cohort study of 712 Caucasian patients, who underwent coronary angiography and measurement of both Lp-PLA2 mass and activity at baseline, we determined incident CV events at follow-up after splitting the patients into a high and a low Lp-PLA2 mass and activity groups based on ROC analysis and Youden index. Kaplan-Meier and propensity score matching analysis were used to compare CV event-free survival between groups. Follow-up data were obtained in 75% of the cohort after a median of 7.2 years (range 1-12.7 years) during which 129 (25.5%) CV events were observed. The high Lp-PLA2 activity patients showed worse CV event-free survival (66.7% vs. 79.5%, p = 0.023) and acute coronary syndrome-free survival (75.4% vs. 85.6%, p = 0.04) than those in low Lp-PLA2 group.ConclusionsA high Lp-PLA2 activity implies a worse CV prognosis at long term follow up in high-risk Caucasian patients referred for coronary angiography.
Project description:Serum type II secretory phospholipase A(2) (sPLA(2)-IIa) has been found to be predictive of adverse outcomes in patients with stable coronary heart disease. Compounds targeting sPLA(2)-IIa are already under development. This study investigated if an association of sPLA(2)-IIa with secondary cardiovascular disease (CVD) events may be of causal nature or mainly a matter of confounding by correlated cardiovascular risk markers.Eight-year follow-up data of a prospective cohort study (KAROLA) of patients who underwent in-patient rehabilitation after an acute cardiovascular event were analysed. Associations of polymorphisms (SNP) in the sPLA(2)-IIa-coding gene PLA2G2A with serum sPLA(2)-IIa and secondary fatal or non-fatal CVD events were examined by multiple regression. Hazard ratios (HR) were compared with those expected if the association between sPLA(2)-IIa and CVD were causal. The strongest determinants of sPLA(2)-IIa (rs4744 and rs10732279) were associated with an increase of serum concentrations by 81% and 73% per variant allele. HRs (95% confidence intervals) estimating the associations of the SNPs with secondary CVD events were increased, but not statistically significant (1.16 [0.89-1.51] and 1.18 [0.91-1.52] per variant allele, respectively). However, these estimates were very similar to those expected when assuming causality (1.18 and 1.17), based on an association of natural log-transformed sPLA(2)-IIa concentration with secondary events with HR?=?1.33 per unit.The present findings regarding genetic polymorphisms, determination of serum sPLA(2)-IIa, and prognosis in CVD patients are consistent with a genuine causal relationship and thus might point to a valid drug target for prevention of secondary CVD events.
Project description:Higher lipoprotein-associated phospholipase A(2)(Lp-PLA2) activity is associated with increased risk of coronary heart disease (CHD), making Lp-PLA2 a potential therapeutic target. PLA2G7 variants associated with Lp-PLA2 activity could evaluate whether this relationship is causal.A meta-analysis including a total of 12 studies (5 prospective, 4 case-control, 1 case-only, and 2 cross-sectional studies; n=26 118) was undertaken to examine the association of the following: (1) Lp-PLA2 activity versus cardiovascular biomarkers and risk factors and CHD events (2 prospective studies; n=4884); (2) PLA2G7 single-nucleotide polymorphisms and Lp-PLA2 activity (3 prospective, 2 case-control, 2 cross-sectional studies; up to n=6094); and (3) PLA2G7 single-nucleotide polymorphisms and angiographic coronary artery disease (2 case-control, 1 case-only study; n=4971 cases) and CHD events (5 prospective, 2 case-control studies; n=5523). Lp-PLA2 activity correlated with several CHD risk markers. Hazard ratios for CHD events for the top versus bottom quartile of Lp-PLA2 activity were 1.61 (95% confidence interval, 1.31 to 1.99) and 1.17 (95% confidence interval, 0.91 to 1.51) after adjustment for baseline traits. Of 7 single-nucleotide polymorphisms, rs1051931 (A379V) showed the strongest association with Lp-PLA2 activity, with VV subjects having 7.2% higher activity than AAs. Genotype was not associated with risk markers, angiographic coronary disease (odds ratio, 1.03; 95% confidence interval, 0.80 to 1.32), or CHD events (odds ratio, 0.98; 95% confidence interval, 0.82 to 1.17).Unlike Lp-PLA2 activity, PLA2G7 variants associated with modest effects on Lp-PLA2 activity were not associated with cardiovascular risk markers, coronary atheroma, or CHD. Larger association studies, identification of single-nucleotide polymorphisms with larger effects, or randomized trials of specific Lp-PLA2 inhibitors are needed to confirm or refute a contributory role for Lp-PLA2 in CHD.
Project description:We evaluated lipoprotein-associated phospholipase A2 (Lp-PLA2) activity in patients with stable coronary heart disease before and during treatment with darapladib, a selective Lp-PLA2 inhibitor, in relation to outcomes and the effects of darapladib in the STABILITY trial. Plasma Lp-PLA2 activity was determined at baseline (n=14 500); at 1 month (n=13 709); serially (n=100) at 3, 6, and 18 months; and at the end of treatment. Adjusted Cox regression models evaluated associations between Lp-PLA2 activity levels and outcomes. At baseline, the median Lp-PLA2 level was 172.4 μmol/min per liter (interquartile range 143.1-204.2 μmol/min per liter). Comparing the highest and lowest Lp-PLA2 quartile groups, the hazard ratios were 1.50 (95% CI 1.23-1.82) for the primary composite end point (cardiovascular death, myocardial infarction, or stroke), 1.95 (95% CI 1.29-2.93) for hospitalization for heart failure, 1.42 (1.07-1.89) for cardiovascular death, and 1.37 (1.03-1.81) for myocardial infarction after adjustment for baseline characteristics, standard laboratory variables, and other prognostic biomarkers. Treatment with darapladib led to a ≈65% persistent reduction in median Lp-PLA2 activity. There were no associations between on-treatment Lp-PLA2 activity or changes of Lp-PLA2 activity and outcomes, and there were no significant interactions between baseline and on-treatment Lp-PLA2 activity or changes in Lp-PLA2 activity levels and the effects of darapladib on outcomes. Although high Lp-PLA2 activity was associated with increased risk of cardiovascular events, pharmacological lowering of Lp-PLA2 activity by ≈65% did not significantly reduce cardiovascular events in patients with stable coronary heart disease, regardless of the baseline level or the magnitude of change of Lp-PLA2 activity. URL: https://www.clinicaltrials.gov. Unique identifier: NCT00799903.
Project description:AIMS:Lipoprotein-associated phospholipase A2 (Lp-PLA2) generates proinflammatory and proatherogenic compounds in the arterial vascular wall and is a potential therapeutic target in coronary heart disease (CHD). We searched for genetic loci related to Lp-PLA2 mass or activity by a genome-wide association study as part of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. METHODS AND RESULTS:In meta-analyses of findings from five population-based studies, comprising 13 664 subjects, variants at two loci (PLA2G7, CETP) were associated with Lp-PLA2 mass. The strongest signal was at rs1805017 in PLA2G7 [P = 2.4 × 10(-23), log Lp-PLA2 difference per allele (beta): 0.043]. Variants at six loci were associated with Lp-PLA2 activity (PLA2G7, APOC1, CELSR2, LDL, ZNF259, SCARB1), among which the strongest signals were at rs4420638, near the APOE-APOC1-APOC4-APOC2 cluster [P = 4.9 × 10(-30); log Lp-PLA2 difference per allele (beta): -0.054]. There were no significant gene-environment interactions between these eight polymorphisms associated with Lp-PLA2 mass or activity and age, sex, body mass index, or smoking status. Four of the polymorphisms (in APOC1, CELSR2, SCARB1, ZNF259), but not PLA2G7, were significantly associated with CHD in a second study. CONCLUSION:Levels of Lp-PLA2 mass and activity were associated with PLA2G7, the gene coding for this protein. Lipoprotein-associated phospholipase A2 activity was also strongly associated with genetic variants related to low-density lipoprotein cholesterol levels.
Project description:BackgroundGenetic factors are important risk factors to develop coronary heart disease (CHD). In this study, we mainly explored whether CYP11B1 mutations influence CHD risk among Chinese Han population.MethodsSix variants were genotyped using Agena MassARRAY system from 509 CHD patients and 509 healthy controls. The correlations between CYP11B1 mutations and CHD risk were assessed using odds ratio (OR) and 95% confidence interval (95% CI) by logistic regression. The haplotype analysis and were ultifactor dimensionality reduction (MDR) were conducted.ResultsIn the overall analysis, CYP11B1 polymorphisms were not correlated with CHD susceptibility. In the stratified analysis, we found that rs5283, rs6410, and rs4534 are significantly associated with susceptibility to CHD dependent on age and gender (p < 0.05). Moreover, we also observed that rs5283 and rs4534 could affect diabetes/hypertension risk among CHD patients (p < 0.05). In addition, the Crs4736312Ars5017238Crs5301Grs5283Trs6410Crs4534 haplotype of CYP11B1 reduce the susceptibility to CHD (p < 0.05).ConclusionsWe found that rs4534, rs6410 and rs5283 in CYP11B1 gene influence the susceptibility to CHD, which depend on age and gender.
Project description:Secretory phospholipase A2 (sPLA2) enzymes are considered to play a role in atherosclerosis. sPLA2 activity encompasses several sPLA2 isoenzymes, including sPLA2-V. Although observational studies show a strong association between elevated sPLA2 activity and CHD, no assay to measure sPLA2-V levels exists, and the only evidence linking the sPLA2-V isoform to atherosclerosis progression comes from animal studies. In the absence of an assay that directly quantifies sPLA2-V levels, we used PLA2G5 mRNA levels in a novel, modified Mendelian randomization approach to investigate the hypothesized causal role of sPLA2-V in coronary heart disease (CHD) pathogenesis.Using data from the Advanced Study of Aortic Pathology, we identified the single-nucleotide polymorphism in PLA2G5 showing the strongest association with PLA2G5 mRNA expression levels as a proxy for sPLA2-V levels. We tested the association of this SNP with sPLA2 activity and CHD events in 4 prospective and 14 case-control studies with 27 230 events and 70 500 controls. rs525380C>A showed the strongest association with PLA2G5 mRNA expression (P=5.1×10(-6)). There was no association of rs525380C>A with plasma sPLA2 activity (difference in geometric mean of sPLA2 activity per rs525380 A-allele 0.4% (95% confidence intervals [-0.9%, 1.6%]; P=0.56). In meta-analyses, the odds ratio for CHD per A-allele was 1.02 (95% confidence intervals [0.99, 1.04]; P=0.20).This novel approach for single-nucleotide polymorphism selection for this modified Mendelian randomization analysis showed no association between rs525380 (the lead single-nucleotide polymorphism for PLA2G5 expression, a surrogate for sPLA2-V levels) and CHD events. The evidence does not support a causal role for sPLA2-V in CHD.
Project description:Our aim is to study selected cerebrospinal fluid (CSF) glycerophospholipids (GP) that are important in brain pathophysiology. We recruited cognitively healthy (CH), minimally cognitively impaired (MCI), and late onset Alzheimer's disease (LOAD) study participants and collected their CSF. After fractionation into nanometer particles (NP) and supernatant fluids (SF), we studied the lipid composition of these compartments. LC-MS/MS studies reveal that both CSF fractions from CH subjects have N-acyl phosphatidylethanolamine, 1-radyl-2-acyl-sn-glycerophosphoethanolamine (PE), 1-radyl-2-acyl-sn-glycerophosphocholine (PC), 1,2-diacyl-sn-glycerophosphoserine (PS), platelet-activating factor-like lipids, and lysophosphatidylcholine (LPC). In the NP fraction, GPs are enriched with a mixture of saturated, monounsaturated, and polyunsaturated fatty acid species, while PE and PS in the SF fractions are enriched with PUFA-containing molecular species. PC, PE, and PS levels in CSF fractions decrease progressively in participants from CH to MCI, and then to LOAD. Whereas most PC species decrease equally in LOAD, plasmalogen species account for most of the decrease in PE. A significant increase in the LPC-to-PC ratio and PLA2 activity accompanies the GP decrease in LOAD. These studies reveal that CSF supernatant fluid and nanometer particles have different GP composition, and that PLA2 activity accounts for altered GPs in these fractions as neurodegeneration progresses.
Project description:Genetic variations were successfully associated among patients with coronary artery disease using Illumina Cardiometabochip containing 1,96,725 SNPs Illumina Cardio-metabochip is a custom designed SNP microarray containing 1,96,725 SNPs designed by several GWAS and consortia
Project description:OBJECTIVE:To conduct an investigation of clinical and genetic correlates of lipoprotein-associated phospholipase (Lp-PLA(2)) activity and mass in a large community-based cohort. Higher circulating Lp-PLA(2) predicts cardiovascular disease risk, but sources of inter-individual variability are incompletely understood. METHODS:We conducted stepwise regression of clinical correlates of Lp-PLA(2) in four Framingham Heart Study cohorts (n=8185; mean age 50+/-14 years, 53.8% women, 9.8% ethnic/racial minority cohort). We also conducted heritability and linkage analyses in Offspring and Generation 3 cohorts (n=6945). In Offspring cohort participants we performed association analyses (n=1535 unrelated) with 1943 common tagging SNPs in 233 inflammatory candidate genes. RESULTS:Sixteen clinical variables explained 57% of the variability in Lp-PLA(2) activity; covariates associated with Lp-PLA(2) mass were similar but only explained 27% of the variability. Multivariable-adjusted heritability estimates for Lp-PLA(2) activity and mass were 41% and 25%, respectively. A linkage peak was observed for Lp-PLA(2) activity (chromosome 6, LOD score 2.4). None of the SNPs achieved experiment-wide statistical significance, though 12 had q values <0.50, and hence we expect at least 50% of these associations to be true positives. The strongest multivariable-association with Lp-PLA(2) activity was found for MEF2A (rs2033547; nominal p=3.20 x 10(-4)); SNP rs1051931 in PLA2G7 was nominally associated (p=1.26 x 10(-3)). The most significant association to Lp-PLA(2) mass was in VEGFC (rs10520358, p=9.14 x 10(-4)). CONCLUSIONS:Cardiovascular risk factors and genetic variation contribute to variability in Lp-PLA(2) activity and mass. Our genetic association analyses need replication, which will be facilitated by web posting of our genetic association results.