Unknown

Dataset Information

0

Increased mitochondrial prooxidant activity mediates up-regulation of Complex I S-glutathionylation via protein thiyl radical in the murine heart of eNOS(-/-).


ABSTRACT: In response to oxidative stress, mitochondrial Complex I is reversibly S-glutathionylated. We hypothesized that protein S-glutathionylation (PrSSG) of Complex I is mediated by a kinetic mechanism involving reactive protein thiyl radical (PrS(•)) and GSH in vivo. Previous studies have shown that in vitro S-glutathionylation of isolated Complex I at the 51 and 75-kDa subunits was detected under the conditions of (•)O2(-) production, and mass spectrometry confirmed that formation of Complex I PrS(•) mediates PrSSG. Exposure of myocytes to menadione resulted in enhanced Complex I PrSSG and PrS(•) (Kang et al., Free Radical Biol. Med.52:962-973; 2012). In this investigation, we tested our hypothesis in the murine heart of eNOS(-/-). The eNOS(-/-) mouse is known to be hypertensive and develops the pathological phenotype of progressive cardiac hypertrophy. The mitochondria isolated from the eNOS(-/-) myocardium exhibited a marked dysfunction with impaired state 3 respiration, a declining respiratory control index, and decreasing enzymatic activities of ETC components. Further biochemical analysis and EPR measurement indicated defective aconitase activity, a marked increase in (•)O2(-) generation activity, and a more oxidized physiological setting. These results suggest increasing prooxidant activity and subsequent oxidative stress in the mitochondria of the eNOS(-/-) murine heart. When Complex I from the mitochondria of the eNOS(-/-) murine heart was analyzed by immunospin trapping and probed with anti-GSH antibody, both PrS(•) and PrSSG of Complex I were significantly enhanced. Overexpression of SOD2 in the murine heart dramatically diminished the detected PrS(•), supporting the conclusion that mediation of Complex I PrSSG by oxidative stress-induced PrS(•) is a unique pathway for the redox regulation of mitochondrial function in vivo.

SUBMITTER: Kang PT 

PROVIDER: S-EPMC4339473 | biostudies-literature | 2015 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Increased mitochondrial prooxidant activity mediates up-regulation of Complex I S-glutathionylation via protein thiyl radical in the murine heart of eNOS(-/-).

Kang Patrick T PT   Chen Chwen-Lih CL   Chen Yeong-Renn YR  

Free radical biology & medicine 20141128


In response to oxidative stress, mitochondrial Complex I is reversibly S-glutathionylated. We hypothesized that protein S-glutathionylation (PrSSG) of Complex I is mediated by a kinetic mechanism involving reactive protein thiyl radical (PrS(•)) and GSH in vivo. Previous studies have shown that in vitro S-glutathionylation of isolated Complex I at the 51 and 75-kDa subunits was detected under the conditions of (•)O2(-) production, and mass spectrometry confirmed that formation of Complex I PrS(•  ...[more]

Similar Datasets

| S-EPMC3418477 | biostudies-literature
| S-EPMC3190717 | biostudies-literature
| S-EPMC3370391 | biostudies-literature
| S-EPMC5963541 | biostudies-literature
| S-EPMC5955866 | biostudies-literature
| S-EPMC3743434 | biostudies-literature
| S-EPMC4244835 | biostudies-literature
| S-EPMC7215361 | biostudies-literature
| S-EPMC4643628 | biostudies-literature
| S-EPMC4481187 | biostudies-literature